This project will combine the extension of portfolio optimization theory with mispricing and the status of “Shanghai-Hong Kong Stock Connect program” basing on the practice experience in financial industry. Due to the phenomenon of the different prices of same stock in the Shanghai and Hong Kong markets, using the financial engineering, stochastic control and parameter calibration, the project will focus on the following two problems: (1) portfolio selection with uncertain time-horizon; (2) robust optimal portfolio with model ambiguity. Specifically, studying the recent literature and analyzing the features of current situation of Shanghai and Hong Kong markets, we hope to abstract the real markets to mathematic models. Then the explicit solution or the numerical solution of the optimal strategies under model ambiguity or uncertain time-horizon will be derived. Finally, the model’s economic implications of the investor behaviors are disclosed based on the research results. Comparing to the previous literature, this research has the following innovations: from the theoretical way, we incorporate the model ambiguity and uncertain time-horizon into the portfolio selection in the financial market with mispricing. From the practical way, the investment strategy by exploiting “Shanghai-Hong Kong Stock Connect program” to realize statistical arbitrage is studied, which will serve the financial institutes on assets allocation.
项目拟结合带定价误差的金融市场理论与我国“沪(深)港通”的实行现状,借助金融机构中的实务操作经验,从上市公司在沪、港两市存在定价误差出发,利用金融工程、随机控制和参数校准等方法,研究如下问题:(1)基于随机退出机制的最优投资组合;(2)基于模型不确定性下的最优鲁棒投资策略。具体地,首先结合前沿研究基础与我国沪、港两地资本市场的现实特征,抽象出较合理的数学模型,随后推导出模型不确定性与(或)随机终止时间下的最优投资组合的解析表达式或数值近视解,最后对投资者的最优投资行为进行经济意义分析。借助理论推导、模拟实验与实证分析,研究结果将提供投资者基于效用最大化的最优投资策略。相比过往研究,本项目具有以下创新:从理论角度上,将模型不确定性与随机退出机制一并引入带定价误差的最优投资组合问题;从实务角度上,首次提出基于“沪(深)港通”的最优投资组合模型,对资产管理操作具有直接的指导意义。
鉴于日前复杂的国际金融形式,在中美博弈的大环境下,不少中国企业选择在美国和香港两地上市,如阿里巴巴、京东、新东方等。此外,中国大型国企和央企均有在香港和内地资本市场进行两地上市的案例,如中国联通、中国工商银行等。这类现象产生了一种新兴市场交易机会:异地交易的股票的价差,这种价差由于受到两地市场的流动性等复杂因素的影响,将长期存在。另外一方面,我们将研究主体限制在保险公司上,对于DC养老金计划参与人和委托代理模型进行了分析,将两者都置于以上复杂的金融市场中,对其最优策略行为进行分析。我们得到了不同情形下,保险公司的最优投资(再保险)策略的显式解,并对结果进行了数值模拟,对产生的结果进行了经济意义上的分析,得到了一系列有意义的结论。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种基于多层设计空间缩减策略的近似高维优化方法
基于MCPF算法的列车组合定位应用研究
基于旋量理论的数控机床几何误差分离与补偿方法研究
新型树启发式搜索算法的机器人路径规划
"多对多"模式下GEO卫星在轨加注任务规划
随机金融市场下连续时间最优动态资产配置
无效市场与资本资产定价模型研究
具有市场摩擦的资产定价理论
跳扩散模型中的期权定价及最优投资问题