Diversity of deep space exploration mission makes the deep space explorer's system more and more complicated. While, the traditional working mechanism for deep-space explorer to establish a precise mathematical model, attitude system analysis, fault diagnosis and fault-tolerant control have become increasingly difficulty, and the problem has become the main bottlenecks for the development of high reliability of control system and autonomous technology. In this research, to improve the reliability and autonomous operation of China's deep-space explorer in orbit as background and application of objective, thorough investigation of actuator mechanism and failure characteristics will be conducted and novel autonomous fault diagnosis and fault tolerant control technique for deep-space explorer under fault will be developed and deeply disscused. More specifically, the research contents include: establishing new theories and methods based on data-driven, which is different from the traditional framework of fault diagnosis; considering the deep space external disturbances and model uncertainties, and also the deep-space explorer's component failure without the angular velocity feedback, presenting new fault tolerant control strategy using only the output feedback information; considering the multi-objective multi-constraint problem, investigating new control allocation schme under redundant executing agency. In summary, this project aims to solve the common scientific problems for fault diagnosis and fault-tolerant control during the deep space exploration mission, and then to effectively reduce the dependence of ground control, communications and other support systems for the deep space explorer and to enhance China's deep-space explorer's reliability and in-orbit autonomous operation capability, and also to provide the theoretical and technical foundation for future application.
深空探测任务多样性使得探测器系统工程越来越复杂,传统的依据探测器各部件工作机理建立精确数学模型并对探测器姿态系统进行分析、故障诊断与容错控制等已变得越来越困难,该问题已成为制约探测器姿态高可靠性、自主控制技术发展的主要瓶颈。本项目以深空探测器姿态控制系统为研究对象,对探测器系统部件故障诊断、容错控制进行基础科学研究。具体内容包括:建立基于数据驱动且有别于传统框架故障诊断新理论和新方法;考虑探测器外部干扰与模型不确定性因素,针对探测器部件故障,研究无需角速度反馈信息的姿态输出反馈容错控制新策略;考虑多目标、多约束问题,基于冗余执行机构为探测器设计动态控制分配新方法。本项目旨在解决深空探测任务中故障诊断与容错控制等共性基础科学问题,为有效地减少深空探测器对地面测控、通讯等支持系统的依赖,并为提高我国深空探测器可靠性和在轨自主运行能力奠定理论与技术基础。
深空探测任务多样性使得探测器系统工程越来越复杂,传统的依据探测器各部件工作机理建立精确数学模型并对探测器姿态系统进行分析、故障诊断与容错控制等已变得越来越困难,该问题已成为制约探测器姿态高可靠性、自主控制技术发展的主要瓶颈。本项目以深空探测器姿态控制系统为研究对象,对探测器系统部件故障诊断、容错控制进行基础科学研究。具体内容包括:建立基于数据驱动且有别于传统框架故障诊断新理论和新方法;考虑探测器外部干扰与模型不确定性因素,针对探测器部件故障,研究无需角速度反馈信息的姿态输出反馈容错控制新策略;考虑多目标、多约束问题,基于冗余执行机构为探测器设计动态控制分配新方法。本项目旨在解决深空探测任务中故障诊断与容错控制等共性基础科学问题,为有效地减少深空探测器对地面测控、通讯等支持系统的依赖,并为提高我国深空探测器可靠性和在轨自主运行能力奠定理论与技术基础。发表相关学术论文被三大检索收录52 篇,其中在IEEE 汇刊、美国航空航天学会(AIAA)等SCI检索期刊上发表29篇;申请/授权发明专利4项;获得国家优秀青年基金资助,并入选教育部青年长江学者与国家“万人计划”青年拔尖人才等。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于被动变阻尼装置高层结构风振控制效果对比分析
带有滑动摩擦摆支座的500 kV变压器地震响应
基于腔内级联变频的0.63μm波段多波长激光器
具有随机多跳时变时延的多航天器协同编队姿态一致性
现代优化理论与应用
基于故障诊断技术的深空探测器姿态自主控制研究
深空探测器在轨自主运行规划与姿态制导技术
基于事件驱动的航天器姿态智能容错控制系统设计研究
一种基于数据驱动的故障诊断与容错控制方法研究