Hydrogen has been emerging as a promising clean and affordable energy due to the merits in high mass energy density and renewability. Water splitting is one of the most convenient and promising approaches to produce hydrogen in a green and sustainable way. Alloying is an important approach to improve catalytic activities and to realize new functions of heterogeneous catalysts, which has extensively been employed in fabricating noble metal based multi-component catalysts. However, it is technically unviable in synthesizing multi-component transition metal compounds in a controllable manner by conventional wet chemical methods. Here we report nanoporous multi-component transition metal compounds with controllable compositions and tunable porosity, which are fabricated by the combination of metallurgical alloy design and selective electrochemical etching. Based on the mechanism of electrochemical hydrogen production, the anion and cation of metal compounds are be modulated by choosing the desired compositions of pristine alloy. The crystallization, defects, compositions and doping in fabrication process are be investigated. The coupling relationship of hydrogen production performance and structure of nanoporous multi-component metal compounds will be exploited for finding optimal composition and pore size. Hence, a controllable, stability, environmentally friendly fabrication process for nanoprous multi-components will be developed for high-efficently electrochemical hydrogen production. This study paves a new way to the fabrication of nanoporous multi-component metal compounds with tuneable compositions for a wide range of energy and environment related applications.
氢能被认为是最具前途的清洁能源之一,其中电催化分解水为制取高纯氢的主要有效途径之一。金属化合物合金化是一种可有效提升催化剂活性,实现多相催化剂新功能的重要方法。然而现有方法难以获得多元金属化合物。为此,本项目采用结合传统冶金技术和选择性电化学刻蚀法相结合来制备纳米多孔多元金属化合物,根据电催化析氢的机理,选择最优的初始合金组分对纳米多孔金属化合物进行阴阳离子共掺杂,获得具有大规模应用前景的新型电催化析氢催化剂。探索纳米多孔金属化合物体系制备过程中的结晶、组分控制、缺陷、掺杂等基础科学问题,研究纳米多孔金属化合物电催化析氢机理及结构——性能之间的耦合关系,找出具有最优电催化析氢性能的组分及构型的选择判据。以此建立一条可调控、稳定、环境友好的纳米多孔多元金属化合物制备的技术路线,实现其高效、稳定、低成本电催化分解水的可行性,为设计和构筑多功能高效非贵金属电催化剂提供了一个新的思路和途径。
氢能被认为是最具前途的清洁能源之一,其中电催化分解水为制取高纯氢的主要有效途径之一。金属化合物合金化是一种可有效提升催化剂活性,实现多相催化剂新功能的重要方法。然而现有方法难以获得多元金属化合物。为此,结合传统冶金技术,本项目采用选择电化学刻蚀法制备纳米多孔多元金属化合物,根据电催化析氢的机理,选择最优的初始合金组分对纳米多孔金属化合物进行阴阳离子共掺杂,获得具有大规模应用前景的新型电催化析氢催化剂。探索纳米多孔金属化合物体系制备过程中的结晶、组分控制、缺陷、掺杂等基础科学问题,研究纳米多孔金属化合物电催化析氢机理及结构——性能之间的耦合关系,找出具有最优电催化析氢性能的组分及构型的选择判据。以此建立一条可调控、稳定、环境友好的纳米多孔多元金属化合物制备的技术路线,实现其高效、稳定、低成本电催化分解水的可行性,为设计和构筑多功能高效非贵金属电催化剂提供了一个新的思路和途径。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
面向云工作流安全的任务调度方法
TGF-β1-Smad2/3信号转导通路在百草枯中毒致肺纤维化中的作用
生物炭用量对东北黑土理化性质和溶解有机质特性的影响
内质网应激在抗肿瘤治疗中的作用及研究进展
纳米多孔镍基双金属的脱合金可控制备、表面修饰及其电催化析氢活性
纳米多孔镍钼钴合金电极材料的制备及电催化析氢机理研究
FeS2/Fe3C-石墨烯复合纳米多孔薄膜的可控制备及电催化析氢反应机理研究
高性能石墨烯垂直有序阵列负载的多元铁族金属磷化物可控制备及其电催化析氢研究