The severe problem about CO2 emission is produced with the rapid development of coal chemical industry in Inner Mongolia region. Thus, the research and development of the new technology for CO2 chemical conversion have a great importance for the CO2 utilization and the sustainable development of energy. In this project, a novel method for synthesizing carbonyl compounds would be developed from the reaction of the nucleophile and CO2 activation state which would be obtained from CO2 activated by the inorganic sulfide in a suitable pH solution, which indicated that the mechanism of CO2 activation and CO2 conversion would be the key scientific problems. Firstly, the molecular structure and properties of the reaction product between CO2 and inorganic sulfide would be studied in detail and then the relationship between the molecular structure of inorganic sulfide, the molecular structure of CO2 activation state and the reactivity of CO2 would be clearly elucidated. Secondly, the scope of the reaction to prepare carbonyl compounds would be examined through the diversely nucleophilic reagents reacted with CO2 which would be used as a carbonyl reagent and activated by the inorganic sulfide. At last, the reaction intermediate and the reaction process between the CO2 and nucleophilic reagent would be detected or trapped in situ by IR, LCMS or NMR, which would be used to study the reaction mechanism of the CO2 activation and chemical conversion. Therefore, various new synthetic methods would be designed to synthesize the carbonyl-containing compounds efficiently according to the mechanism of the CO2 chemical conversion mediated by inorganic sulfide. This project would provide a novel route for the application of inorganic sulfide and CO2, and also supply a new green synthetic method to synthesize carbonyl compounds from CO2.
内蒙古化工行业飞速发展的同时带来了日益严重的CO2排放问题。因此,研发CO2化学转化的新技术对于能源可持续发展和CO2的利用意义重大。本项目利用无机硫化物活化CO2使其形成活化态,然后通过调控反应体系的pH值使CO2的活化态与亲核试剂反应设计合成羰基化合物,力求探明CO2活化与转化过程中的关键科学问题。首先,研究无机硫化物与CO2结合产物的结构与性能,探明无机硫化物结构、CO2活化态结构与CO2反应活性间的内在联系。其次,探究无机硫化物活化CO2作为羰基化试剂与亲核试剂反应构建羰基化合物的规律,揭示其通用性。最后,采用红外、液质和核磁监测CO2与亲核试剂的反应进程,捕获反应中间体,并深入探讨CO2活化与转化的机理,为利用CO2合成结构多样的羰基化合物提供理论基础。本项目的成功实施将为无机硫化物的应用与CO2的化学转化开辟新途径,为羰基化合物的绿色合成提供新方法。
化石能源的广泛使用带来了日益严重的CO2排放问题。因此,研发CO2化学转化的新技术对于能源和化工的可持续发展和CO2的资源化利用意义重大。本项目发现NaSH或H2S等无机硫化物能够催化活化CO2并进行CO2化学转化,获得了利用CO2构建C-S、C-N或C-O键合成苯并咪(噻或噁)唑酮、(硫代)2,4-喹唑啉二酮、咪(噁)唑烷酮或脲类化合物等多种含羰基化合物的新方法,并阐明了无机硫化物活化CO2进行化学转化的反应机理。此外,为了充分利用无机硫资源,本项目首次设计了新反应和新路线使废气H2S和CO2在温和的条件下共同转化为噻唑烷-2-酮类杂环化合物,为H2S和CO2混合工业废气的资源化利用开辟一种新的应用解决方案。此外,在本项目的资助下还研究了还原CO2作为碳一资源合成苯并咪(噻)唑类衍生物的方法,探索了碳酸或烷基碳酸在合成硫代苯甲酰胺或苯并噻唑类衍生物中的应用方法。. 目前在该项目的资助下共发表论文10篇,待发表论文3篇,申请中国发明专利5项,培养硕士研究生12名,博士研究生1名。项目申请者申请获批了“内蒙古自治区高等学校CO2资源化利用创新团队”与“二氧化碳资源化利用自治区高等学校重点实验室”。本项目系统地研究了Na2S、NaSH与K2S等无机硫化物活化CO2转化为羰基化合物的合成规律,研究结果表明这些无机硫化物催化效率较低,究其原因可能是由于无机硫化物在有机溶剂中的溶解性能较差,只有微量的 CO2 活化中间体生成。据此,今后需要设计出在有机溶剂中具有良好溶解性能的含硫催化剂来提升催化效率。因此本项目的实施为设计出高效催化转化CO2的新型含硫催化剂奠定基础,将解决硫元素活化CO2的关键科学问题。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
结核性胸膜炎分子及生化免疫学诊断研究进展
原发性干燥综合征的靶向治疗药物研究进展
基于Pickering 乳液的分子印迹技术
生物炭用量对东北黑土理化性质和溶解有机质特性的影响
无机纳米片的再配列过程及新型无机层状化合物的设计合成
TiO2纳米线复合材料光催化CO2转化为碳氢化合物的分析研究
非氟CO2增稠剂的设计、合成及作用机理
硒羰基化合物合成方法研究