Separation on the level of molecules is one of the most technologies in chemistry and chemical engineering. In this project, novel porous framework materials and composite membranes supported by different kinds of multidimensional structured materials will be explored and prepared. More attention will be focused on their structure and functionalization design, synthetic procedure and related molecular sieving performance. Novel metal-organic frameworks (MOFs) based on direct synthesis of metal node units and transformation of ions will be prepared first, in which the specialized metal node unit will be constructed by employing metal organic clusters with different spatial configurations and functions combined with the post-synthetic modification method. Then another new kind of frameworks will be assembled by the adjustable functionalized ligands to realize the design of topological structure and function of metal organic framework materials on molecular level. The synergistic effect of metal nodes and organic ligands in metal organic framework materials will be investigated in detail, which will play an important role in improving stability and gas separation selectivity. Secondly, several series of polymer/biomaterial supported porous framework material composite membranes with high strength, high quality and high compatibility will be fabricated, in which metal organic framework materials will be combined with modified polymeric materials, functional microporous organic polymer (MOPs) materials and natural bio-based porous materials (BPMs). The synergetic effect between supports and porous framework materials will be investigated in detail, especially for those with node engineering and post-synthetic modification. The mechanism of molecular sieving and kinetics of gas adsorption for different structural porous frameworks and composite membranes will be studied, as well as the transfer phenomenon among gas molecules - porous framework materials/composite membranes - supports in different target gas mixture systems. As a result, this research will provide new materials and effective methods for molecular separation with high precision and industrial production process in green chemistry.
分子水平的分离对化学和化学工业至关重要。本项目拟采用材料、化学和工程科学基础研究手段,阐释目前未知的多孔材料及复合膜的设计、功能化及构效关系等重要科学问题,解决高质量多孔材料及复合膜制备的关键技术。首先,采用不同金属有机团簇对节点单元进行直接合成改性及离子转换后修饰,构筑特色化金属节点基团体系;同时,采用小分子金属无机化合物以结构模块方式构建可调变功能化配体单元;通过对骨架结构中功能化位点和孔道限域空间的智能化设计提升对分子的精准吸附,实现低能耗下的高选择性分离。其次,以改性聚合物、生物基材料等为基质,将微孔聚合物材料MOPs、生物骨架材料与金属有机骨架MOFs有机结合,制备不同系列的新型多孔骨架材料复合膜,研究其材料、结构与性能间的关联。最后,针对不同气体体系研究其分子筛分机理和吸附动力学,探讨气体-多孔材料/复合膜-基质间的传递学,为高精度分子水平分离和绿色化工工艺提供新材料和新方法。
本项目围绕面向分子筛分的新型多孔骨架材料的设计与合成、复合膜的结构和功能化设计、材料合成及其性能等基础问题开展了探索性科学研究,对多孔材料及复合膜的设计、功能化及构效关系等进行了分析,结合不同体系的分子筛分机理和吸附动力学研究,探讨了目标分离分子-多孔材料/复合膜-基质间的传递现象及相关材料学,为高精度分子水平分离和绿色化工工艺提供新材料和新方法。首先,在多孔材料制备化学与材料学基础方面,首次对金属有机骨架(MOFs)、自具微孔聚合物(PIMs)、超交联聚合物(HCPs)、多孔衍生碳基复合材料等系列多孔骨架材料进行了结构定向设计和功能化修饰,研究了合成工艺、参数及条件对不同材料形貌、尺寸及表面特性影响,进行了合成过程中晶体成核和生长的动力学研究,分析了多孔骨架材料结构组成的调控原则及形貌演变机制,实现了高性能多孔骨架材料的可控制备。其次,在复合膜材料制备的化学与材料学设计及基础研究方面,研究了多种有机基底和中间层的改性策略,通过提高多孔材料纳米颗粒分散性以及兼容性,进行了高性能高稳定多孔材料成膜及复合膜的制备,创新性地开发设计了多种高质量、超薄新型复合膜,所制备的复合膜不仅具有精确的尺寸筛分效应、且结构稳定,由于成膜方法简便、可靠,实现在组器件上直接复合、可规模化制备多孔材料复合膜,进一步推动其工业化应用进程。最后,在多孔材料及复合膜构效关系及分子设计原理研究方面,深入探讨了多孔骨架材料及复合膜中金属位点-有机配体-功能基团间的协同效应,通过膜微观结构的精确调变,增强其分离性能和稳定性,优化制备可工业实际应用的分子筛分复合膜。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
面向云工作流安全的任务调度方法
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
用于气体分离的多孔骨架-流体分离介质复合膜的理论设计与模拟
制备面向精密分子筛分纳米微孔膜的表面接枝化学
基于分子笼骨架有机多孔材料的制备及其应用研究
多孔超分子离子骨架材料(SPINs):新型有机多孔材料的实用制备及温室气体吸附研究