The development of organic/polymer solar cells based on photovoltaic effect is one of the most significant ways to solve the energy and environment problems. This program would develop transparant conducting materials based on low-cost solution processed multi-scale functionalized graphene. This kind of materials would be used as an effective alternative to meet the large-scale demands, and they focus on the obvious disadvantages of ITO containing rare metal as anode conducting film, such as their poor adhesion to polymer, poor stability and high cost etc. The research contents are following below: 1) multi-scale functionalization of solution processed conductive graphene with enhanced thermal stability; 2) compatible composites of low defect graphene functionalized by acid and conducting polymers; 3) study on novel polymer solar cell with functionalized graphene as transparent conducting anode. The structure-activity relationship would be examined between structures and thermal stability, dispersibility, optical transmittance and electroconductivity. The complex methods for doping by organic/mineral acids and conducting polymers on low defect graphene would be established. After chemical modification of graphene, the objective dialectic laws to increased thermal stability and dispersibility and decreased conductivity would be revealed due to defect increase. The fundamental theories on increasing performance of material could be illustrated. The restrictive relation between higher conductivity and decreased transmittance in visible light owing to increased film thickness would be clarified. This program would provide significant theoretical guide and technical support on practical and large-scale low cost production for photovoltaic solar cells.
发展基于光生伏特效应的有机/聚合物太阳能电池已成为解决能源和环境问题的重要途径之一。针对含稀有金属的ITO作为阳极导电膜存在粘附性、稳定性差及成本高等缺点,本项目将开发低成本可溶液加工的透明导电功能化石墨烯薄膜作为替代品以满足其大规模应用需求。研究内容为:1)可溶液加工高热稳定性导电石墨烯的多尺度功能化;2)低缺陷石墨烯与酸、导电高分子的相容性复合功能化;3)功能化石墨烯为透明导电阳极的聚合物太阳能电池研究。揭示结构与热稳定性、分散性、可见光透光率及导电性间的构效关系,建立有机/无机酸及导电高分子对低缺陷石墨烯掺杂的复合方法,揭示石墨烯化学功能化提升的热稳定性及分散性与缺陷增加致使导电性降低之间的制衡规律,阐明提高材料各项性能的基本原理,明晰增加薄膜旋涂厚度导致的高导电率与随之下降的可见光透射率之间的制约关系。本项目将为光伏太阳能电池的实用化和大规模低成本生产提供重要的理论指导和技术支撑。
基于光伏效应的太阳能电池的开发是解决能源和环境问题最重要的途径之一。太阳能电池的功率转换效率(PCE)高度依赖于活性层膜的形态,包括晶粒尺寸和分布,表面覆盖度,导电率和界面相互作用等。研究内容如下:(1)制备了多种可溶液处理的多尺度功能化石墨烯纳米结构。由于多分散性和多功能性,化学可控石墨烯基复合物的非均相合成是一个巨大挑战。我们利用羟胺分子可以室温对氧化石墨烯(GO)进行同步表面和边缘修饰。这种方法使石墨烯基材料的大规模生产成为可能,以满足应用需求。已经通过共价/非共价一锅策略设计了边缘连接的多层石墨烯结构,表现出优异的热稳定性和分散性,表明界面相互作用增强。由于石墨烯的刚性结构,在含有苯基的聚苯乙烯的GO中成功的湿化学官能化提供了在非均相反应中亲核取代的可能性。 (2)聚(3, 4-亚乙基二氧噻吩):聚(苯乙烯磺酸)(PEDOT:PSS)由于其在水中的溶液可加工性,广泛应用于太阳能电池应用中。与未经处理的PEDOT:PSS相比,经水溶性维生素处理的PEDOT:PSS显示出从0.3到1000 S cm-1的显著增强的电导率。聚合物膜可以用来代替ITO组装太阳能电池器件。酸性PSSH给器件的稳定性和性能带来严重问题。超声处理的PEDOT:PSS,Clevios PH1000和Clevios P,可被用作聚合物太阳能电池和钙钛矿太阳能电池中的空穴传输层。(3)构建了ITO/PEDOT:PSS/PTB7:PC71BM/Ca/Al 和ITO/PEDOT:PSS/CH3NH3PbClxI3-x/PC61BM/ rhodamine101/C60/LiF/Ag结构的聚合物太阳能电池和钙钛矿太阳能电池。聚合物太阳能电池的PCE为8.0-8.1%。钙钛矿太阳能电池的PCE可达到约13.0%。而在NaCl掺杂的PEDOT:PSS上制备的钙钛矿太阳能电池的平均PCE为17.1%。此外,石墨烯基纳米材料和PEDOT:PSS还被用于构建电化学传感器对有毒化合物进行高灵敏电催化检测。本项目的研究工作将为光伏太阳能电池的实际大规模低成本生产提供重要的理论指导和技术支持。本项目共发表SCI论文14篇(其中IF> 4.0的8篇,均为TOP期刊),申请了11项中国发明专利,其中3项获得授权。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
面向云工作流安全的任务调度方法
纳米透明导电磁性颗粒膜的光、电、磁特性研究
协同分散石墨烯为模板原位聚合湿法加工制备透明电极及其柔性光伏器件
溶液加工型叠层结构有机光伏电池研究
Al/H共掺杂ZnO基透明导电窗口层的制备及其在陷光结构铜铟镓硒薄膜光伏电池中的应用