The three-dimensional structures, combinated quantity and immunological activities of the immobilied antibodies have crucial influence on the stability, sensitivity and selectivity of heterogeneous immunoassays. The advantages of oriented immobilization of biologically active proteins are good steric accessibilities of active binding sites and increased stability. This project focus on the characteristic of ZZ peptide binding Fc-region of IgG antibody and solid-phase material surface chemical modification, and a new method for the oriented immobilization of IgG with high activity will be established by use of a ZZ-His protein and a nickel chelate polystyrene microtiter plate. In this reseach, the recombinant ZZ-His protein?is construct by recombinant DNA technology, a histidine tag was introduced at the C-terminus of the ZZ protein. For chemical modification, IDA-Ni(II) active group was introduced at polystyrene microtiter plate (PS) surface by chemical method. The active group of IDA-Ni(II) can bind to the His tag based on immobilized metal affinity, and the ZZ-His protein is immobilized at directional pattern,viz.ZZ fragment is exposed from the surface of PS. ZZ protein specifically bound to the Fc-region of IgG from many mammals, while leaving the Fab regions available for antigen binding. Thus the IgG will be indirect immobilized based on metal affinity to Fc-(ZZ-His)-Ni(II) patterns for Fab end at outwardly immobilization, thereby obtaining biological self-assembly, maintain antibody activity and stereotactic immobilized antibody. This project will through the analysis of ZZ antibodies with spatial orientation, binding activity and antigen in immune response, to reveal the assembly and directional fixing mechanism of Fc-(ZZ-His)-Ni(II). We anticipate that the method for oriented immobilization of IgG will improved the specificity and sensitivity of solid-phase immunoassay, and will play an important role in the clinical immunodiagnosis, immune sensor, antibody microarrays and other fields.
固相化抗体的空间构型、数量及免疫学活性是影响固相免疫测定稳定性、灵敏度和选择性的关键因素。本课题以ZZ亲和肽与IgG抗体Fc段亲和特性为切入点,结合固相材料表面化学修饰,探究一种IgG立体定向固定的抗体固相化新方法,以期解决固相抗体的随机偶联及活性不能充分保持的关键问题。本课题拟用重组技术表达ZZ-His重组蛋白,聚苯乙烯(PS)微孔板表面化学改性键合IDA-Ni(II)手臂,ZZ-His先以金属亲和方式固定在PS表面后,再结合抗体Fc段达到Fc-(ZZ-His)-Ni(II)模式的抗体Fab端向外定向展示,从而获得生物自组装、保持抗体活性及立体定向的固相化抗体。课题通过阐明Fc-(ZZ-His)-Ni(II)的组装机制与定向固定机理,实现定向、高活性及高密度一致的IgG固相抗体,提高固相免疫分析特异性与灵敏度,并有望在免疫诊断、免疫传感器及抗体芯片等领域发挥重要作用。
固相免疫分析是一大类重要的免疫分析技术,在生命科学及临床诊断等领域广泛应用。在该技术中抗体需要包被于固相载体表面,基于随机偶联的物理吸附及化学共价偶联技术不能确保固相化抗体的Fab端充分暴露而影响其抗原捕捉能力,从而影响了固相免疫测定灵敏度和稳定性。本项目紧紧围绕着ZZ亲和肽与IgG 抗体Fc段的亲和特性,利用基因工程技术构建系列ZZ亲和肽重组蛋白,结合固相材料表面化学修饰,探究一种立体定向固定的抗体固相化新方法,以期解决固相抗体的随机偶联及活性不能充分保持的关键问题。在项目执行期间,主要进行了下列研究工作:①构建了ZZ-His重组亲和肽,通过化学改性在聚苯乙烯(PS)载体表面引入了功能性Ni2+手臂,介导ZZ-His重组亲和肽在PS表面的定向固定,建立一种基于PS–IDA–Ni2+–(ZZ-His亲和肽)-Fc自组装模式的IgG抗体立体定向;②构建了ZZ-Cystag重组亲和肽,通过化学改性在聚苯乙烯(PS)载体表面引入了马来酰亚胺基团,基于Cystag与马来酰亚胺基形成共价键,介导ZZ亲和肽以亲和结合方式定向固定于PS载体表面, 继而实现IgG 抗体立体定向固定,实现了抗体的高密度、立体定向固定;③构建了ZZ-PStag重组亲和肽,由PStag介导ZZ亲和肽在疏水性PS载体表面的定向固定,继而介导IgG 抗体立体定向固定;④构建了ZZ-Avitag、AP-(Avitag)2两个重组蛋白,由BirA酶生物催化实现Avitag的定点生物素化,借助于生物素-亲和素(BAS)的体系,不仅实现了无化学偶联的BAS酶学信号放大体系,而且由ZZ-B介导实现IgG抗体在预包被亲和素介质表面的定向固定进而实现IgG抗体的定向固定。.本项目研究工作是建立在ZZ亲和肽与IgG抗体Fc 段亲和特性基础上,结合载体表面的化学改性,在具体研究工作中通过4种方式实现了ZZ亲和肽的定向固定,建立了一种生物自组装、保持抗体活性及立体定向的抗体固相化新技术,与随机偶联的配基固定技术相比较,均能使检测灵敏度提高10倍以上。上述研究工作顺利地达到了项目预期研究目标,在国家自然科学基金资助下,本项目发表SCI收录论文4篇(总计IF16),中文核心期刊论文3篇,获得授权发明专利4件。在目前研究基础上再进一步开发研究后,本项目研究成果切实有望在免疫诊断、免疫传感器及抗体芯片等领域发挥重要作用。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
硬件木马:关键问题研究进展及新动向
基于SSVEP 直接脑控机器人方向和速度研究
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
亲和标签肽引导的SPA-IgG组装体导向固定构建三维固相抗体
利用表位定向抗体库技术进行抗体体外分子进化
反基因定向阻断自身抗体IgG2a抗原决定簇治疗sle研究
多酶体系的定向共固定化:亲和LB膜法和共辅基法