Based on innovatory quantum theory and methods, and making effective and economical solid solar cells materials and devices research and development as a prospect, to design and improve corresponding eximious computer program applied in large-scale system excited state charge transfer dynamics related profile and properties by comparing the theoretical calculations and experiments characterization results, for computational accuracy improvement and big excited state scale systems computing achievement and for the simulations of excited state properties of large-scale system including interface structure, as well as the interactions and charge transfer mechanism between excited-state quantum dot with semiconductor. Aimed to clarify the influence from internal structure to the cell performance and how to simulate the interface between both different crystal segments. And to figure out the pivotal charge injection mechanism in the charge transfer process. Through the simulation and calculation of light capturing efficiency, quantum yield and the photoelectric conversion mechanism, to fully understand the essential reasons of solid materials excited state properties and the influence on the solar cell efficiency. Reveal the intersystem crossing efficiency, the carriers transfer mechanism in optoelectronic devices and the excited state properties regulation rules, summarize the relationship from charge transfer characteristics and the actual device performance under the dynamic and kinetic theory. The quantum dot and perovskite materials building frame theoretical investigation in this project is focus on to resolve both the excited state photoelectric conversion mechanism simulation and optoelectronic devices efficiency calculations. On the basis of the development of the excited state quantum chemical basis of the theory and application expansion, provide the theoretical support to developing promising new generation of solid solar cells materials with high photoelectric conversion efficiency.
以发展量子化学理论方法为前提,以高效、经济、稳定的太阳能光电转换器件研发为背景,本课题拟采用和改进高水平的应用于大尺度体系激发态电荷转移动力学相关性质的方法来系统的研究大尺度固体界面体系的激发态性质,以及处于激发态的量子点与半导体基质间的相互作用和电荷转移机制。突出瞄准固体结构内部因素对电池性能的影响以及二种组分相互作用界面的研究模拟问题。解决固体太阳能电池系统复杂的电荷转移过程中电子注入等关键理论问题。通过光电转换机理、光捕获效率和量子产率的模拟计算来全面理解固体材料激发态性质及对电池效率影响的最本质原因。以解决光电器件效率瓶颈问题为重点,进行设计新型高效的量子点和钙钛矿材料。在发展激发态量子化学基础理论和应用拓展的基础上,为开发有应用前景的高光电转换效率的太阳能光电转换器件提供可靠的理论保障和指导。
在发展和改进量子化学理论方法大背景下,以高效、经济、稳定的太阳能光电转换器件研发为目标 ,本课题采用和改进了高水平的应用于大尺度体系激发态电荷转移动力学相关性质的方法来系 统的研究大尺度固体界面体系的激发态性质,以及处于激发态的量子点与半导体基质间的相互作用和电荷转移机制。突出瞄准了固体结构内部因素对电池性能的影响以及二种组分相互作用界 面的研究模拟问题。解决了固体太阳能电池系统复杂的电荷转移过程中电子注入等关键理论问题 。通过光电转换机理、光捕获效率和量子产率的模拟计算来全面理解固体材料激发态性质及对 电池效率影响的最本质原因。以解决光电器件效率瓶颈问题为重点,进行了设计新型高效的量子点和钙钛矿材料的尝试。在发展激发态量子化学基础理论和应用拓展的基础上,为开发有应用前景的 高光电转换效率的太阳能光电转换器件提供了可靠的理论保障和指导。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
内点最大化与冗余点控制的小型无人机遥感图像配准
氯盐环境下钢筋混凝土梁的黏结试验研究
钢筋混凝土带翼缘剪力墙破坏机理研究
上转换纳米材料在光动力疗法中的研究进展
太阳能电池光敏材料光电转换性质的理论研究
新型固态纳米晶膜太阳能电池的研制及机理研究
钙钛矿太阳能电池中新型有机空穴传输材料的合成、应用和光电转换机理研究
面向能源的新型光电材料光电转换过程的核心共性机理研究