With the development of the condensed phase excited state theory as basic conditions, based on the development of efficiency, table and economic perovskite type photoelectric conversion devices, this project intends to use and improve the corresponding program and method of improving accuracy and application in large scale system, excited state charge transfer mechanical properties of the excited state properties of large scale research on solid interface system, as well as in the interaction and charge transfer process and mechanism between quantum dots excited state and semiconductor substrates. In this project, we study perovskite photoelectric conversion materials, including luminescent and solar cell materials, to solve the central theoretical problems in the process of simulating "photo-to-electricity" and "electro-to-optical" conversion. The relationship between the microcosmic structures and the excited state properties of the photoelectric material system is elucidated. Combined with the theory of Nonadiabatic quantum dynamics, we will reveal the intersystem crossing efficiency of the system, the regulation mechanism of the carrier mechanism and the excited state property of the photoelectric devices, and will summarize the relationship between the charge transfer characteristics and the actual device efficiency. In order to solve the two bottleneck problems of the "lifetime" of the excited state and the "efficiency" of the optoelectronic devices, the theoretical material design will be carried out. On the basis of developing the basic theory and application of excited state quantum chemistry, it provides theoretical support for the development of promising material system.
以发展凝聚相激发态理论方法为前提,以高效、经济、稳定的钙钛矿型光电转换器件研发为背景,本课题拟采用和改进相应的计算程序,提高计算精度并实现应用于大尺度体系激发态电荷转移动力学相关性质的方法,系统的研究大尺度固体界面体系的激发态性质,以及处于激发态的量子点与半导体基质间的相互作用和电荷转移机制。本项研究钙钛矿光电转换材料包含发光和电池材料,解决模拟“光-电”与“电-光”转换过程中的核心理论问题。阐明光电材料体系微观结构和激发态性质的关系;并结合动力学理论,揭示体系的系间窜越效率、光电器件中载流子机制及激发态性质调控规律,总结电荷转移特征与实际器件效能的关系。以解决激发态“寿命”和光电器件“效率”两个瓶颈问题为重点,进行材料设计的理论研究。在发展激发态量子化学基础理论和应用拓展的基础上,为开发有应用前景的材料体系提供理论支撑。
应用拓展的凝聚相激发态理论方法,本项目旨在发掘高效、经济、稳定的钙钛矿型光电转换材料。基于第一性原理并结合非绝热载流子动力学相应算法,经由高精度计算模拟最终实现了应用于大尺度体系并完成了材料性能的量子调控路径。本项目执行期内系统地研究了表面和界面体系的激发态性质,以及处于激发态的量子点与半导体基质间的相互作用和电荷转移机制。为了突出研究钙钛矿光电转换材料中的发光应用和光伏应用,将“光-电”与“电-光”转换过程中的核心理论问题被重点阐述。最终阐明了光电材料体系微观结构和激发态性质的关系;并结合动力学理论揭示了体系的应用效率,和光电器件中载流子机制及激发态性质调控规律,总结了电荷转移特征与实际器件效能的关系。在发展激发态量子化学基础理论和应用拓展的基础上,为开发有应用前景的材料体系提供了理论支撑。项目执行期内发表SCI论文25篇,其中一区论文9篇,在投一区论文2篇。执行期内培养博士6名,硕士5名,在毕业论文中致谢了本基金。目前该研究方向在读博士生2名,硕士生2名。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
低轨卫星通信信道分配策略
敏感性水利工程社会稳定风险演化SD模型
Wnt 信号通路在非小细胞肺癌中的研究进展
基于LBS的移动定向优惠券策略
面向电致发光应用的钙钛矿量子点薄膜光电性质研究
量子点钙钛矿复合材料的开发及其在光电转换器件中的应用
双钙钛矿纳米材料的可控合成与光电特性研究
新型钙钛矿结构的有机-无机杂化光电功能材料