It has been well established that fabricating the successional and orderly transcrystallization in the confined layered space is one of simple and efficient approaches to achieve the high performance and multi-functional micro- and nano-materials based on polypropylene matrix. We firstly take advantage of the confinement effect of layer-multiplying coextrusion to compel α or β nucleating agent to be selectively distributed in the particular layer. In this multiplied composites, the alternating multilayer composites consist of polypropylene layer and nucleating agent filled-polypropylene layer, and numerous α or β-transcrystallization are generated in this particular confined layer. We aim to gain the tunable structure and morphology of PP- transcrystallization through deeply investigating the crystallization behavior of α or β-transcrystallization in different confined scale gap (micro-scale or nano-scale). Based on the above research, the reinforcement and toughening mechanism of α and β-transcrystallization and will be further probed. Also the behavior of gas barrier and microporous membrane by stretching will be investigated in order to attain the high performance and multi-functional micro- and nano-materials based on PP matrix. The project has been based on the current research and future development trend of PP transcrystallization. The fundamental investigation about the relationship among processing-structure-performance of PP films prepared by layer-multiplying coextrusion will be focused on the basic and key scientific issues. This research will offer a new meaningful idea and method to fabricate continues and orderly PP-transcrystallization, to deepen the fundamental understanding of the behavior of PP-transcrystallization, and to provide the novel theory in terms of high performance and multi-functional micro- and nano-materials based on PP matrix. We truly believe this research will be of great theoretical and practical significance.
在层状受限空间里构筑连续有序横晶是实现PP基微纳材料高性能和功能化的有效途径。本项目首次利用微纳层共挤出的限位效应将α或β成核剂定向分布在PP膜的特定区域,形成PP层和PP/成核剂层交替排列的连续层状结构,在层状受限空间里构筑连续有序的α或β横晶。深入研究α和β横晶在不同尺度层状受限空间(微米级到纳米级)里的结晶行为,实现PP横晶结构和形态的可调控。在此基础上,进一步研究α和β横晶的增强增韧机制,以及α和β横晶的气体阻隔性能和拉伸成孔性,制备高性能和功能化的PP基微纳材料。本申请项目针对PP横晶的研究的现状和发展趋势,围绕基本科学问题开展微纳层共挤出PP膜加工-结构-性能之间相互关系的研究,将为构筑连续有序PP横晶提供新思路和新方法、加深对PP横晶基本性质的理解、为实现PP基微纳材料的高性能和功能化提供新理论,具有重大的理论和现实意义。
聚丙烯(PP)微孔膜附加值高,其产品广泛应用于电池分离膜、人工肺、水净化、化工提纯和服装等领域。随着PP微孔膜应用领域的扩大,开发具有独特性能的新型微孔膜成为一项迫切的任务。P晶体具有丰富的晶型和形态,很大程度上决定PP膜拉伸成孔机理。因此研究具有特殊晶体结构和形态PP膜的拉伸成孔特性对探索该领域基本科学问题和开发新型PP微孔膜具有重要意义。本项目首次利用微层共挤出的限位效应将α或β成核剂定向分布在PP基材的特定区域,形成PP层和PP/成核剂层交替排列的连续层状结构,利用二维层状界面处的高密度成核点诱导连续有序的长方体状PP横晶。深入研究α和β横晶在层状受限空间里的结晶行为,提高PP横晶的结晶度和有序性,实现晶片尺寸和晶片间距离的可调控。在此基础上,进一步研究α和β横晶的力学性能以及拉伸成孔规律和特性,制备孔径可调的新型PP微孔膜。本申请项目针对PP膜结晶和拉伸成孔研究的现状和发展趋势,围绕基本科学问题开展微层共挤出PP膜加工-结构-性能之间相互关系的研究,将为构筑连续有序PP横晶提供新思路和新方法、加深对PP横晶基本性质的理解、丰富PP晶体的拉伸成孔机理,具有重大的理论和现实意义。本项目共发表论文14篇(其中SCI收录12篇),获得国家授权发明专利7项。培养博士毕业生4名,硕士毕业生2名。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
特斯拉涡轮机运行性能研究综述
环境类邻避设施对北京市住宅价格影响研究--以大型垃圾处理设施为例
基于图卷积网络的归纳式微博谣言检测新方法
基于Pickering 乳液的分子印迹技术
PP/PTFE微孔发泡材料的微纳层级结构构筑及其界面润湿性能研究
聚合物微纳层状复合结构的构筑及其特性研究
金刚石复合材料有序微纳结构界面构筑及其高导热机制
层状有序立构晶体的构筑及其增韧PLA的机理研究