半导体物理中的若干量子宏观模型

基本信息
批准号:11101049
项目类别:青年科学基金项目
资助金额:22.00
负责人:陈秀卿
学科分类:
依托单位:北京邮电大学
批准年份:2011
结题年份:2014
起止时间:2012-01-01 - 2014-12-31
项目状态: 已结题
项目参与者:仝辉,刘立才
关键词:
量子漂流扩散模型量子能量输运模型量子NavierStokes模型大初值整体解半经典极限
结项摘要

本项目拟研究半导体物理学中产生的若干具有量子效应的宏观模型。由于与半导体器件的描述紧密相关,这几类模型具有很强的应用背景和重要的理论意义,近年来受到了国内外数学家与物理学家的广泛关注。从数学上看,这几类量子宏观模型都是含有高阶退化非线性抛物方程的方程组。与经典的流体动力学方程组相比,量子修正项(即高阶项)使方程组的数学结构发生了根本性的改变。由于基于极值原理的一系列方法不再适用,给问题的研究带来了挑战,目前还没有形成一套成熟的理论方法。尤其对于量子能量-输运模型,缺少对温度变量的适当先验估计;而对于量子Navier-Stokes模型,存在多个类型方程的耦合作用。因此对这两类模型的研究难度更大,研究结果非常少。我们将主要研究量子Navier-Stokes模型的半经典极限和粘性消失极限;一类简化量子能量-输运模型的半经典极限和松弛时间极限;高维六阶量子漂流-扩散模型的大初值整体解和半经典极限。

项目摘要

量子能量-输运模型是最难的一类量子宏观模型,用于描述半导物理中产生的量子效应。通过建立对Planck常数的先验估计,我们得到了一类简化量子能量-输运模型的半经典极限。Aubin-Lions引理是对发展型偏微分方程进行紧性讨论的基本工具之一。我们给出了两个时空Lp空间中带有时间平移假设的非线性紧性定理,这是对Aubin-Lions-Simon引理的非线性推广;近而通过引入新的证明思想,去掉了Aubin-Lions(-Dubinskii)引理中一个基本的空间嵌入条件,并且给出应用。FENE-型和胡克-型聚合物流体模型,杆状细菌在溶液中游动的Doi-Saintillan-Shelley模型,胶体杆状沉积物动力学模型都是由描述宏观流体的Navier-Stokes方程和描述微观颗粒的Fokker-Planck方程耦合而成的方程组,近年来受到广泛关注。我们系统地探讨了这四类模型整体解的存在性或唯一性。此外,讨论了分别源于Hookean和FENE相对熵估计的全空间上和单位球上权空间的一系列连续和紧嵌入定理。这些嵌入结果的条件大部分是最优的;而且不依赖于空间维数。Navier-Stokes–Maxwell-Stefan方程组是刻画多组分化学反应扩散的经典模型,在化学工程中已经得到了广泛应用,我们建立了一类不可压简化情形下模型整体弱解的存在性和指数衰减到平衡态的性质,证明了Temam等人于1995年宣布但当时未证明的结果。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

粗颗粒土的静止土压力系数非线性分析与计算方法

粗颗粒土的静止土压力系数非线性分析与计算方法

DOI:10.16285/j.rsm.2019.1280
发表时间:2019
2

主控因素对异型头弹丸半侵彻金属靶深度的影响特性研究

主控因素对异型头弹丸半侵彻金属靶深度的影响特性研究

DOI:10.13465/j.cnki.jvs.2020.09.026
发表时间:2020
3

中国参与全球价值链的环境效应分析

中国参与全球价值链的环境效应分析

DOI:10.12062/cpre.20181019
发表时间:2019
4

基于公众情感倾向的主题公园评价研究——以哈尔滨市伏尔加庄园为例

基于公众情感倾向的主题公园评价研究——以哈尔滨市伏尔加庄园为例

DOI:
发表时间:2022
5

基于细粒度词表示的命名实体识别研究

基于细粒度词表示的命名实体识别研究

DOI:10.3969/j.issn.1003-0077.2018.11.009
发表时间:2018

陈秀卿的其他基金

批准号:11471050
批准年份:2014
资助金额:60.00
项目类别:面上项目

相似国自然基金

1

宏观量子效应与介观物理问题

批准号:19675030
批准年份:1996
负责人:李有泉
学科分类:A2501
资助金额:5.70
项目类别:面上项目
2

几类宏观和微观半导体方程的若干数学问题

批准号:11671134
批准年份:2016
负责人:黎野平
学科分类:A0306
资助金额:42.00
项目类别:面上项目
3

量子计算模型与量子信息中的若干问题

批准号:90303024
批准年份:2003
负责人:邱道文
学科分类:F0201
资助金额:25.00
项目类别:重大研究计划
4

若干超导材料宏观模型的数值求解方法

批准号:11701529
批准年份:2017
负责人:陈涛
学科分类:A0504
资助金额:20.00
项目类别:青年科学基金项目