Most of Nidovirales use conserved transcriptional regulatory sequence (TRS) to produce a series of sub genomic RNA (sgRNA) for improving the utilization efficiency of their genomes and speeding up transcription/replication. While, when the applicant analyzed the transcription data collected by Next Generation Sequencing (NGS) from type I PRRSV-infected cells, we found variable TRS in PRRSV sgRNAs. Based on the principle of matching rule of TRS, mutation in TRS would bring down transcription efficiency. However, the recently isolated PRRSV variants with even more various TRS gained faster proliferation rate. To give an explanation for the contradiction, we propose a hypothesis that PRRSV would conduct the discontinuous sgRNA synthesis with a continuous process and L-TRS would be an assistant of the B-TRS during the transcription. To prove the hypothesis, we will use NGS to reveal sgRNA transcription profile in classical type I PRRSV and/or HP-PRRSV infection PAM cells. And according to the obtained data, we will answer the question whether a continuous or discontinuous process would be used in PRRSV sgRNA transcription. Through construction of L-TRS deleted mutant, RNA pull-down and yeast three-hybrid assay, we will elucidate the role of L-TRS in sgRNA transcription and the way that it involves in. Through cDNA clone manipulation and overexpression of minus sgRNAs, we would illuminate the mechanism on regulation quantity of different sgRNAs. Finally, we will reveal the unique mechanism used by PRRSV to transcription sgRNAs with various B-TRS and provide data for understanding the efficient proliferation and rapid variation characteristics of PRRSV.
多数套式病毒目病毒借助保守的转录调控序列(TRS)转录出亚基因组(sgRNA),以提高基因组利用效率和增殖速度。前期分析I型PRRSV转录组时却发现其sgRNA TRS异常多变。依据sgRNA转录理论,突变TRS会降低转录效率,但近年来出现的PRRSV变异株,TRS变异度增加,增殖速度却更快。为解释这一现象,我们提出了PRRSV 非连续sgRNA的连续转录和L-TRS辅助B-TRS转录的假说,建立了一种新的半连续转录(QMSS)模型。项目将用高通量测序分析单、共感染PRRSV sgRNA转录谱,解答连续性转录的问题;通过构建L-TRS缺失体、RNA Pull-Down和酵母三杂交试验分析L-TRS的作用及其工作模式;通过反向遗传操作和过表达试验解析调控sgRNA转录量的机制。最终验证模型,揭示PRRSV利用多变B-TRS 高效转录的独特机制,为理解PRRSV高效增殖和快速变异特性提供依据。
猪繁殖与呼吸综合症病毒(PRRSV)及其他套式病毒目病毒转录出一系列的亚基因组(sgRNA),以实现各编码蛋白的高效、均衡表达,但对PRRSV转录复制的相关研究非常有限,利用二代高通量测序和反向遗传学操作技术,对PRRSV欧洲株、美洲株进行转录组测序,探寻不同基因型毒株的转录差异,并进一步解析sgRNA转录调控机制。首先分别对美洲型毒株HuN4、欧洲型毒株LLV-1进行高通量测序,对Body-TRS的分布规律、不同感染时间病毒转录本丰度、不同感染细胞的转录差异进行比较。在HuN4基因组共鉴定到了168个Body-TRS,在LLV-1基因组共鉴定到163个Body-TRS。大部分TRS用于转录生成PRRSV结构蛋白的非经典sgmRNA,其中引导GP6表达的Body-TRS鉴定到25种(HuN4),表明非经典TRS在引导病毒蛋白表达中的关键作用,也表明了PRRSV sgRNA转录过程的复杂性。继而利用反向遗传学操作平台对Body-TRS的功能进行了验证。研究发现TRS6的引入促使外源蛋白形成了独立的表达单元,并证实了外源基因插入ORF7和3’UTR之间能够稳定表达,为PRRSV作为疫苗载体研究奠定了理论基础。为探究欧、美毒株的转录机制,以LLV-1为骨架,将美洲株ORF2-7替换到相应的开放阅读框,成功拯救到嵌合株rLLV-1-HuN4。经验证,嵌合毒株具备跟亲本毒株相似的生物学活性,表明美洲株的结构基因替换到欧洲株基因组中仍然能够发挥相应的功能。此外研究证实,美洲型TRS6及其侧翼序列可使外源基因在欧洲型基因组中的表达更稳定。上述研究为解析 PRRSV 适应快速变异的生物学特征提供理论依据,为全面揭示 PRRSV 转录复制机制奠定基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
病毒性脑炎患儿脑电图、神经功能、免疫功能及相关因子水平检测与意义
施用生物刺激剂对空心菜种植增效减排效应研究
长链基因间非编码RNA 00681竞争性结合miR-16促进黑素瘤细胞侵袭和迁移
RNA-Seq-based transcriptomic analysis of Saccharomyces cerevisiae during solid-state fermentation of crushed sweet sorghum stalks
制冷与空调用纳米流体研究进展
利用基因组学解析金丝猴对秦岭独特生境的适应机制
非结构蛋白nsp2调控PRRSV亚基因组转录复制的分子基础
5′和3′非编码区对PRRSV转录和调控作用机制的研究
利用抗独特型抗体模拟酶活性的探索