Title: The Geometry of Moduli Spaces and families of of Higher dimensional algebraic manifolds,including related topics on varities with positive characteristic...We plan to study compactifications of moduli spaces of higher dimensional algebraic manifolds, the cohomology groups of moduli spaces and the deformations of families of algebraic manifolds. Our program will contains the following four topics:..I. The Global geometry of moduli spaces of polarized Calabi-Yau-like manifolds(including the geometry of locally symmetric arithmetic varieties) and the explicit compactifications of moduli spaces...II. Cohomology groups of local systems on moduli spaces of polarized Calabi-Yau-like manifolds, including cohomology groups of locally symmetric varieties...III. Sub-varieties of moduli spaces of polarized Calabi-Yau-like manifolds and.the fiberation structures of Calabi-Yau-like manifolds...IV.The liftable property of algebraic varieties with positive characteristic p, and its applications in problems related to Calabi-Yau-like manifolds....We will study our program from view of modern Hodge Theory.
题目:高维代数流形Moduli空间和纤维丛的几何及其正特征代数簇相关问题。..本项目拟围绕着高维代数流形Moduli空间紧化(compactification),Moduli空间上的上同调研究,以及纤维丛的形变(deformation)分类开展工作。 具体是以下四个方面:.I..Calabi-Yau类流形Moduli空间(包括局部对称算术簇)的整体几何性质和代数几何紧化(compactification)的几何构造精细化。.II..Calabi-Yau类流形Moduli(包括局部对称算术簇)紧化空间上local system 向量丛的各类上同调;.III..Calabi-Yau类流形Moduli空间的子簇和Calabi-Yau 流形纤维丛几何结构这些方向的研究。 .IV..正特征代数簇提升性质及其在Calabi-Yau类流形相关问题上的应用
题目:高维代数流形Moduli 空间和纤维丛的几何及其正特征代数簇相关问题。 ..本项目围绕着高维代数流形Moduli 空间紧化(compactification),Moduli 空间上的上同调研.究,以及纤维丛的形变(deformation)完成一些研究工作。 具体是从Hodge 理论和 Kaehler-Einstein 理论 这两个角度研究了复Abelian 簇的Moduli 空间(包括局部对称算术簇)的整体几何性质和j代数几何的精细紧化(compactification)的几何构造精细化, 另一方面我们也考虑了 正特征代数簇的提升性质(项目参与者谢启鸿的工作), 为以后在模空间的研究探索正特征代数簇的有效工具。
{{i.achievement_title}}
数据更新时间:2023-05-31
中药对阿尔茨海默病β - 淀粉样蛋白抑制作用的实验研究进展
珠江口生物中多氯萘、六氯丁二烯和五氯苯酚的含量水平和分布特征
向日葵种质资源苗期抗旱性鉴定及抗旱指标筛选
一种基于多层设计空间缩减策略的近似高维优化方法
复杂系统科学研究进展
高维代数簇的相关问题
正特征上三维代数簇的丰沛性问题
丛代数的基和广义丛代数的正性
高维代数簇的双有理几何