Due to their multifunctional properties such as lightweight, high strength, thermal insulation, vibration reduction and so on, sandwich plates with the core of hexagonal metal honeycombs are widely used in the fields of mechanical engineering and aerospace engineering. To greatly increase the in-plane stiffness of the conventional hexagonal honeycombs, the multifunctional hierarchical honeycombs (MHH) are proposed, which are produced by replacing the cell wall of the conventional hexagonal honeycombs with three kinds of equal mass substructures, including triangular, Kagome and Chiral honeycombs, respectively. However, the vibration reduction properties of the sandwich plates with the core of MHH have not been sufficiently studied. Consequently, focusing on the optimization design of the vibration reduction of the sandwich plates with the core of MHH with the above mentioned three kinds of substructures, the following research work will be carried out in this project: (1) The vibration transmission loss properties of the aluminum out-of-plane sandwich plates are systematically studied through the analytical method combining Reissner’s theory and the plane wave expansion method, numerical simulations and experimental verifications; (2) The vibration band gaps and transmission loss properties of the aluminum in-plane sandwich plates are analyzed by numerical simulations, which combines the Bloch theory and the finite element method, and experimental verifications; (3) To solve the problem involving the self-adaptive vibration reduction of the sandwich plates, the experimental study is conducted by replacing the aluminum alloy with the high damping Ni-Ti alloy and by introducing the piezoelectric fiber composite actuator on the top panel surface of the sandwich plates. The project could provide new strategy for the multifunctional structural integral design of the sandwich panels in the fields of mechanical engineering and aerospace engineering.
六边形金属蜂窝夹层板因其轻质、高强、隔热、减振等特点,被广泛用于机械和航空航天等领域的多功能结构中。为了大幅度提高传统六边形蜂窝结构的平面内刚度,提出了多功能分级蜂窝结构,就是用等质量各向同性的三角形、Kagome和Chiral蜂窝子结构,代替传统六边形蜂窝细胞壁。但多功能分级蜂窝夹层板在减振方面的研究还不够充分,为此,本项目针对上面三种子结构的金属多功能分级蜂窝夹层板的减振优化设计,开展以下研究:(1)用Reissner夹层板理论和平面波展开法以及数值模拟和实验验证,研究铝合金平面外夹层板的振动传递损失特性;(2)结合Bloch定理和有限元方法以及实验验证,研究铝合金平面内夹层板的振动带隙和传递特性;(3)针对夹层板的自适应减振问题,将铝合金用Ni-Ti阻尼合金进行代替,并在上面板布置压电纤维复合材料铺层,进行实验研究。本项目为机械和航空航天等领域的多功能结构一体化设计提供了新的思路。
六边形金属蜂窝夹层板因其轻质、高强、隔热、减振等特点,被广泛用于机械和航空航天等领域的多功能结构中。为了大幅度提高传统六边形蜂窝结构的平面内刚度,提出了多功能分级蜂窝结构,就是用等质量各向同性的三角形、Kagome和Chiral蜂窝子结构,代替传统六边形蜂窝细胞壁。但多功能分级蜂窝夹层板在减振方面的研究还不够充分。针对上面三种子结构的金属多功能分级蜂窝夹层板的减振优化设计,用Reissner夹层板理论和平面波展开法,研究了铝合金平面外夹层板的振动传递损失特性。结合Bloch定理和有限元方法,研究了铝合金平面内夹层板的振动带隙和传递特性。针对夹层板的自适应减振问题,将铝合金用Ni-Ti阻尼合金进行代替,并在上面板布置压电纤维复合材料铺层,进行了实验研究。结果表明Ni-Ti阻尼合金和压电纤维复合材料铺层相结合,可以很好地解决多功能分级蜂窝夹层板的宽频段自适应减振问题,为机械和航空航天等领域的多功能结构一体化设计提供了新的思路。此外,利用本项目的支撑,提出了将柔性电子薄膜用于多功能分级蜂窝夹层板的智能减振降噪的概念,并开展了相关基础研究。提出了柔性抗扭负泊松比凸凹蜂窝梁,研究了其振动特性。提出了负泊松比凸凹蜂窝柱和管结构,研究了其冲击动力学性能。研究了正交各向同性负泊松比泡沫结构和负泊松比管结构的率相关力学性能。同时,对人字槽气体轴承的动力学性能进行了全面数值模拟研究,提出了气体轴承稳定性判断的一种新方法。
{{i.achievement_title}}
数据更新时间:2023-05-31
青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化
宽弦高速跨音风扇颤振特性研究
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
基于余量谐波平衡的两质点动力学系统振动频率与响应分析
结直肠癌肝转移患者预后影响
中国人群HIV-1B亚型Gag、Pol、Env和Nef蛋白区变异对CTL应答的影响及其保守区表位鉴定
大型蜂窝夹层板超精密成形
基于自适应压电分流阵列的智能超构材料板减振降噪特性研究
板带轧机减振理论和减振装置的研究
基于隧穿理论和高级统计能量分析的加筋板振动特性和减振机理研究