Limited by indirect band nature of Si, Si-based laser is the grail of the researchers on Si photonics. One possible approach is to combine Si substrate with efficient lasing material. The recent hot topic of perovskite, along with high fluorescence yield and wavelength tunability, also make it ideal materials for lasing. However, due to its relative unstable abilities, structured perovskite is difficult to be obtained by traditional technology, and can be hardly integrated with other optoelectronic materials. Moreover, the luminescent wavelength of perovoskite is limited in the visible range, which limits its application..The project aims to integrate rare earth doped low-dimentional perovksite with Si-based nano-structure, and tries to obtain prototype electrical pumped Si-based pervoskite lasers. The research includes the following: study on the synthesized process to obtain stable rare earth doped perovskite low-dimentional materials, such as the effect of different precursor, ligand materials and surface passivation on the luminescent property of perovskite low-dimentional material; research on the interaction between photon-induced exciton and nanostructure;optimize Si-based optical and electrical structure, reduce mode loss, thermal-induced loss and other non-radiational recombination loss, and increase radiation efficiency of the devices. The project provides a crucial step to the exciting prospect of an.all-electrically pumped Si-based pervoskite lasers and find potential commercial applications including displays, detectors and lab-on-chip technology.
受限于硅的间接带本质,硅基激光器的实现一直是研究人员孜孜以求的目标。将高效的光源与硅基底相结合,是一条可选之路。近年来,异军突起的MAPbX3型钙钛矿材料由于良好的直接带特性,高的荧光发光效率等优点,是一类理想的发光材料。然而,一方面,钙钛矿材料图形化加工困难,难以进行光电集成;另一方面,其发光波段仅限于可见光区域,因此应用受限。.本项目拟将硅基纳米结构与稀土掺杂的钙钛矿低维材料相结合,研制出电注入的近红外硅基纳米结构钙钛激光器。主要内容包括:研究钙钛矿低维材料制备技术,探索掺杂的稀土材料、前驱体及配体材料、浓度等反应条件以及表面效应对低维材料发光特性的影响;研究钙钛矿低维材料光生激子与微纳结构的相互作用;通过优化硅基纳米谐振腔结构,以及光学模式调控,降低模式损耗和热化损失等非辐射复合损耗,进而提高器件的发光效率;研究电注入结构,提高激光器的电注入效率。
受限于硅的间接带本质,硅基激光器的实现一直是研究人员孜孜以求的目标。将高效的光源与硅基底相结合,是一条可选之路。近年来,异军突起的MAPbX3型钙钛矿材料由于良好的直接带特性,高的荧光发光效率等优点,是一类理想的发光材料。然而,一方面,钙钛矿材料图形化加工困难,难以进行光电集成;另一方面,其发光波段仅限于可见光区域,因此应用受限。.本项目针对高效硅基钙钛矿近红外发光器件开展,主要内容包括:研究钙钛矿低维材料制备技术,探索掺杂的稀土材料、前驱体及配体材料、浓度等反应条件以及表面效应对低维材料发光特性的影响;从理论研究和工艺制备等多方面对界面工程及能带工程钙钛矿光电器件的性能进行了深入的探讨;硅基钙钛矿量子点发光器件中的器件物理性能研究。.通过努力,首次研制出了电注入的980nm掺Yb硅基全无机钙钛矿量子点发光器件,有望用于血氧仪等领域;其次将高效发光的钙钛矿量子点运用在硅APD及硅基Ge PD上,利用量子点的波长下转换功能,克服了紫外死区问题以及持续光电导问题,成功制备出新型的高效硅基紫外探测器,未来有望拓展至日盲成像。.发表SCI论文35篇,申请发明专利5项,培养博士生、硕士生12人。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
内点最大化与冗余点控制的小型无人机遥感图像配准
氯盐环境下钢筋混凝土梁的黏结试验研究
上转换纳米材料在光动力疗法中的研究进展
自组装短肽SciobioⅡ对关节软骨损伤修复过程的探究
稀土配合物掺杂硅基纳米粒子及其在近红外荧光免疫分析中的应用
稀土掺杂硅基中红外光电探测材料及器件性能研究
可用于微光夜视领域的新型硅基近红外成像传感器芯片材料
硅基δ掺杂量子阱红外探测器的研制