Electronic skin has become one of research hotspots in medical, intelligent robot and wearable electronic device and so on. Multi-functional flexible electronic skin, much closer to the function of human skin, can sense surroundings to obtain accurately information (such as force, temperature and light, etc.) Now, the multifunctional electronic skin over rely on flexible substrate and different sensitive devices, of which the fabrication is complex and higher cost. It is difficult for wide application to get out of the laboratory. In this project, novel multifunctional nanocomposites will be designed and synthesized, of which the fiber films with different microstructure is fabricated by 3D printing-electrostatic spinning technology. The fiber films used as electronic skin to instead flexible substrate such as PDMS. To obtain the response and accurate position of force, temperature and light, the latitude and longitude circuit will be designed on the fiber films as electronic skin. Therefore, this project will be carried out that provide a forming manufacturing technology of new multifunctional nanocomposites and break through the traditional concept used the PDSM as the flexible substrate, which will be conducive to the electronic skin in intelligent robot and medical application, and it is significant importance to make the artificial electronic skin closer to human skin.
电子皮肤已成为医学、智能机器人及可穿载的电子设备等领域研究热点之一。多功能化的柔性电子皮肤更接近于人类皮肤功能,能同时准确感知周围环境的各种信息(如力、温度和光等)。目前多功能性电子皮肤过度依赖柔性基板和多种敏感元器件,使其制备工艺复杂,生产成本高昂,难于走出实验室得到广泛应用。本项目拟设计制备多功能性新型纳米复合材料,提出通过3D打印-电纺丝技术制造电子皮肤薄膜替代PDMS基底,设计电子皮肤感应的经纬电路,实现了电子皮肤同时对力、温度和光的感应及其准确定位。本项目的开展将为电子皮肤多功能化发展提供新型纳米复合材料的成形制造工艺,突破了以PDMS为柔性基底的传统设计理念,有利于推动电子皮肤在医学和智能机器人上的应用,为人造电子皮肤更接近人类皮肤赋予重要意义。
本项目从电子皮肤的柔韧性、灵敏度和多功能性出发,研究了集多功能响应和优异的柔性、拉伸性为一体的电子皮肤材料。重点做了两项研究:(1)设计合成了一种高弹性和定形相态变化的功能高分子,以它为基体制备了一种对力、温度和光高灵敏响应的新型多功能纳米复合材料,并研究了纳米复合材料的响应性能和机理;(2)采用3D打印-静电纺丝工艺研究了自驱动响应的电子皮肤薄膜的成形工艺,并成功实现了高灵敏度的自驱动红外光(infrared,简称IR)响应的电子皮肤器件,同时探索出了一种由微晶体的可逆相变驱动的机械能转化为电能的自驱动红外光响应机理。本项目的开展实现了以优异柔性和拉伸性的敏感纳米复合材料薄膜替代PDMS基体,可以直接在纳米复合材料上打印经纬电路,实现对力、温度和光的感应及其准确定位,同时,项目还建立了3D 打印-静电纺丝技术,用于制造柔性可拉伸性的微纳纤维薄膜。项目为柔性多功能电子皮肤的发展提供了新的科学设计理念,为电子皮肤在机器人、人工智能、生物医学领域的应用奠定了研究基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
珠江口生物中多氯萘、六氯丁二烯和五氯苯酚的含量水平和分布特征
向日葵种质资源苗期抗旱性鉴定及抗旱指标筛选
中温固体氧化物燃料电池复合阴极材料LaBiMn_2O_6-Sm_(0.2)Ce_(0.8)O_(1.9)的制备与电化学性质
一种基于多层设计空间缩减策略的近似高维优化方法
复杂系统科学研究进展
静电纺丝制备纳米复合材料及其环境应用研究
基于3D打印和原位极化的压电复合材料制备研究
新型纳米结构的静电场诱导成形原理与工艺研究
功能性纳米复合纤维的静电纺丝制备及调控机理