Sodium has similar chemical properties with lithium, and is abundant in the earth crust. Therefore, room temperature sodium-ion batteries (NIBs) have attracted great attention in the large-scale energy-storage field. Currently, one of the hot research topics of NIBs is developing electrodes with high performance. Ti-based solid solution oxides (Ti-SSOs) are novel electrodes for NIBs, presenting excellent electrochemical performance with smooth charge/discharge curves when these Ti-SSOs are used as cathode or anode in NIBs. We have previously developed Ti/Ni, Ti/Co and Ti/Mn binary Ti-SSOs with different crystalline structures, and established the Ti-SSOs electrode research system. Based on our previous research results, this study will research the element substitution of Ni and Co in O3-type Ti/Ni cathode and P2-type Ti/Co anode materials by Fe, Mn and so on, establish the ternary or quaternary Ti-SSOs with decreased materials cost, improve their electrochemical performance through surface modification, research the electrochemical reaction mechanism of Ti-SSOs deeply, and investigate the reasons for Ti-SSOs with smooth curves during charging and discharging processes. The implementation of this project will develop the novel ternary or quaternary Ti-SSOs with good electrochemical performance and low cost, consummate Ti-SSOs research system, and has important significance on understanding Ti-SSOs deeply and promoting the utilization of Ti-SSOs in NIBs.
钠元素与锂元素化学性质相似,且储量丰富,因此室温钠离子电池(NIBs)在大规模储能领域很有吸引力。目前NIBs的研究重点是开发高性能电极材料。Ti基固溶体氧化物(Ti-SSOs)是一种新型电极材料,电化学性能优异且充放电曲线光滑。我们的前期研究已开发了不同结构的Ti/Ni、Ti/Co及Ti/Mn等二元Ti-SSOs,建立了Ti-SSOs材料研究体系。本研究拟在前期基础上,采用Fe、Mn等元素取代O3-型Ti/Ni正极与P2-型Ti/Co负极材料中的Ni与Co元素,实现Ti-SSOs材料的三元或四元固溶化并降低材料成本,结合表面改性进一步提高Ti-SSOs的电化学性能,深入研究Ti-SSOs的电化学反应机制,并探讨其充放电曲线光滑的原因。本项目的实施将开发新型高性能、低成本三元或四元Ti-SSOs,完善Ti-SSOs研究体系,对深入了解Ti-SSOs材料并推动其在NIBs上应用具有重要意义。
开发钠离子电池(NIBs)高性能电极材料对于大规模、低成本储能应用具有重要价值。Ti基固溶体过渡金属氧化物材料(Ti-SSOs)具有优异的倍率和循环性能,是室温NIBs电极材料的重要研究体系之一。但Ti-SSOs还需进一步拓展完善,其电化学性能还需提高,成本还需显著降低。同时,Ti-SSOs的电化学反应机制需要深入探究,尤其是充放电过程中多平台现象消失的原因需要阐明。本项目为解决上述科学问题和技术挑战,开展了成体系的研究工作。(1)利用Fe元素取代Co, Ni,制备出低成本P2(Na0.67Ni0.33Ti0.67O2), T1(Na2.65Ti3.35Fe0.65O9)和T2(NaTiFeO4)三相复合晶畴材料,通过改变Fe元素比例调控晶畴比例并优化电化学性能,阐明了电化学演化及Na+脱/嵌机理;(2)制备了P2-型Na2/3Ni1/3Ti2/3O2(NNT)和P2-型Na2/3Co1/3Ti2/3O2(NCT)材料,结合结构解析与理论计算揭示了反应机制和Na+的脱/嵌方式,证实材料充放电多平台消失现象是由于Ti元素得失电子不断地进行可逆偏移,从而降低Na+脱嵌迁移能垒并缓解材料内部应力所致;(3)制备了P2-tunnel型Na0.67Fe0.4Mn0.6O2及多金属P2-tunnel型Na0.67Fe0.25Mn0.65Mg0.05Ti0.05O2复合晶畴材料,通过调控元素比例以调节晶畴结构,并实现材料性能提高。(4)优化球磨法制备了SiP2/C复合材料并显著提升了SiP2的倍率及循环性能,综合原位及离线技术揭示了SiP2的放电产物、结构演化及无定形化规律。(5)利用球磨法调控了Sn4P3的结构转化,制备了系列二元Sn4P3/C、四元Sn4P3/Sn/P/C及三元Sn/P/C复合负极材料,通过优化复合材料的组成与结构提升了循环性能。(6)针对高性能NIBs关键材料,包括过渡金属氧化物材料、复合结构材料及固态电解质与界面进行了综述评论,对锂离子电池等体系开展了原创研究和综述评论工作。基于上述研究,撰写论文19篇(已发表17篇),申请专利7项,培养博士后及研究生多人,其中硕士研究生马昊获“北京市优秀毕业生”称号。这系列工作开发了一系列高性能NIBs电极材料,揭示了材料电化学转化规律与机理,为进一步构筑高性能电极材料、提升NIBs综合性能提供了科学依据。
{{i.achievement_title}}
数据更新时间:2023-05-31
EBPR工艺运行效果的主要影响因素及研究现状
妊娠对雌性大鼠冷防御性肩胛间区棕色脂肪组织产热的影响及其机制
中温固体氧化物燃料电池复合阴极材料LaBiMn_2O_6-Sm_(0.2)Ce_(0.8)O_(1.9)的制备与电化学性质
濒危植物海南龙血树种子休眠机理及其生态学意义
组蛋白去乙酰化酶在变应性鼻炎鼻黏膜上皮中的表达研究
高性能树脂基复合材料低成本技术基础研究
低成本高电催化活性金属基电极材料的研究
钠离子电池高性能、低成本煤基炭负极材料的制备与储能机制研究
新型锂电池多电子反应锰基电极材料研究