3-Hydroxypropionate (3-HP) is an important platform chemical in the list of top 12 value added chemicals from biomass released by the US Department of Energy. 3-HP can be readily converted to commodity chemicals including acrylic acid, methyl acrylate, acrylamide, and 1,3-propanediol.The combined market of those chemicals is well over $1 billion/year. Due to the complicated process and high cost of chemical synthesis, the biological production of 3-HP has been proposed as an alternative. While biological production of 3-HP has been reported, the yield is well below what is required for commercialization, and 3-HP accumulated in media inhibits bacterial growth severely. 3-HP tolerance represents a trait that is a fundamental barrier to commercialization, yet remains poorly understood. In this study, transcriptomic and proteomic methods will be used to identify the Escherichia coli chromosomal loci or proteins that are required for 3-HP tolerance. Based on the screening results, a number of important target genes will be selected, and further investigated to identify the novel molecular networks underlying the bacterial tolerance and elucidate the 3-HP tolerance mechanisms of E. coli. According to the 3-HP tolerance mechanisms, E. coli strain will be genetically engineered to enhance its tolerance to 3-HP, and the engineered strain will be used in fermentation to test the 3-HP yield. This study will not only improve the 3-HP biological synthesis technology, but also provide scientific information and reference for the production of other bio-based chemicals because the growth inhibition caused by product is a common obstacle in bio-based chemicals production.
3-羟基丙酸是一种重要的平台化合物,可用于生产丙烯酸、甲基丙烯酸、丙烯酰胺、丙二醇、新型聚酯等,以上几种化学品每年全球市场份额超过10亿美元。由于化学合成工艺繁琐且成本高,生物法生产3-羟基丙酸由于具有成本低、操作简单、绿色环保等优势越来越受到人们的重视。然而生物法生产3-羟基丙酸还存在诸多问题,其中产物对菌体生长的抑制作用是制约3-羟基丙酸产量的主要因素之一。本研究通过转录组学和蛋白质组学等方法确定与大肠杆菌3-羟基丙酸耐受性相关的基因。根据研究结果,选择其中的重要基因进行深入的功能和调控机制研究,阐明大肠杆菌对3-羟基丙酸的耐受性机制,建立相关的分子网络基础。根据3-羟基丙酸耐受性机制,对大肠杆菌进行基因工程改造,增强其对3-羟基丙酸的耐受性,用于3-羟基丙酸的发酵生产。本研究不仅为生物法合成3-羟基丙酸的技术提升奠定理论基础,还将为其它生物基化学品的生产提供科学信息和参考。
3-羟基丙酸是一种重要的平台化合物,利用微生物发酵法生产3-羟基丙酸是目前研究的重点。微生物发酵过程中,3-羟基丙酸的逐渐积累会抑制工程菌株的正常生长,影响产量,是制约3-羟基丙酸工业化生产的重要因素。为理解大肠杆菌的3-羟基丙酸耐受性机制,开发具有3-羟基丙酸耐受性的工程菌株,本项目进行了以下两个方面的研究工作:. 1. 利用蛋白质组学方法分析了大肠杆菌在3-羟基丙酸胁迫条件下的应答反应。提取了大肠杆菌在3-羟基丙酸存在时的全细胞蛋白,通过二维电泳进行分离,并与对照条件下的大肠杆菌蛋白样品进行比较,利用质谱鉴定表达量发生变化的蛋白。最终发现在3-羟基丙酸胁迫条件下有46种蛋白表达量上升,23种蛋白表达量下降,表达量上升的蛋白主要集中于氨基酸代谢、能量代谢、ATP合成等途径。在上调蛋白中,我们随机选取了10种未经报道的基因进行克隆和过表达,发现其中9个基因可以提高大肠杆菌在3-羟基丙酸胁迫条件下的存活率。. 2. 初步建立了依赖于CpxRA系统的大肠杆菌酸抗性机制。发现二组分系统CpxRA可以直接感受酸性环境,并激活大肠杆菌不饱和脂肪酸合成基因fabA和fabB,增加大肠杆菌细胞膜脂中不饱和脂肪酸含量,从而赋予大肠杆菌酸抗性。CpxRA或fabA、fabB缺陷的大肠杆菌突变菌株在酸性环境中的存活率都显著下降。. 通过以上工作,对大肠杆菌酸抗性机制有了进一步了解,构建了部分耐受3-羟基丙酸的大肠杆菌工程菌株,有助于提高3-羟基丙酸产量,降低生产成本,为3-羟基丙酸的发酵工业化生产奠定了理论基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
Protective effect of Schisandra chinensis lignans on hypoxia-induced PC12 cells and signal transduction
Efficient photocatalytic degradation of organic dyes and reaction mechanism with Ag2CO3/Bi2O2CO3 photocatalyst under visible light irradiation
论大数据环境对情报学发展的影响
DeoR家族转录因子PsrB调控黏质沙雷氏菌合成灵菌红素
农超对接模式中利益分配问题研究
大肠杆菌微氧产3-羟基丙酸代谢工程研究
光合玫瑰菌3-羟基丙酸循环固碳途径的分子机制
甘油生物催化合成3-羟基丙酸的应用基础研究
基于全局转录机器工程生产3-羟基丙酸及其调控机理