Fano resonances, originating from atomic systems, become one of the hottest research topics in surface plasmon photonics after being introduced into optical systems, and show great application potential in the fields of biosensing, nonlinear optics, and so on. Due to the limitation of material, metal-based plasmonic Fano resonances have some shortcomings containing high dissipative loss, narrow working frequency range, and unfeasible tunability, which confine the range of applications. As an outstanding optoelectronic material, graphene is promising to compensate for the above shortcomings. This project aims to explore the generation methods, physical mechanisms, and control methods of plasmonic Fano resonances in graphene polymers, as well as the properties of their perception on environmental refractive index. It mainly includes: (1) Study the features of plasmonic resonant coupling in graphene nanostrips, establish the theoretical model and equations, and discover the mechanism of resonant coupling; Explore the spectral characteristics in the structures of graphene polymers, and clarify the generation methods of plasmonic Fano resonances; (2) Establish the physical model of plasmonic Fano resonances in graphene polymers, and explain the physical mechanisms of their generation; (3) Explore the control principles and methods of plasmonic Fano resonances in graphene polymers as well as the feasibility of their application in the high-sensitivity perception on environmental refractive index. The related outcomes not only contribute to deepening the understanding of optical features of graphene polymers, but also provide a new pathway for developing new optoelectronic devices and optical sensing.
法诺共振源于原子系统,引入到光学系统后,成为表面等离激元光子学的研究热点,并在生物传感和非线性光学等领域显示出重要的应用潜力。受材料限制,金属表面等离激元法诺共振存在损耗高、工作频带窄、不可调谐等缺点,应用范围有限。石墨烯作为一种优异的光电子材料,有望弥补上述缺点。本项目旨在探索石墨烯聚合体表面等离激元法诺共振产生方式、物理机制、调控方法以及对环境折射率的感知特性,主要包括:①研究石墨烯纳米带表面等离激元共振耦合特性,建立理论模型及方程,揭示共振耦合机理;探索石墨烯聚合体结构的光谱特性,阐述表面等离激元法诺共振的产生方式;②构建石墨烯聚合体表面等离激元法诺共振的物理模型,阐释其产生的物理机制;③探索石墨烯聚合体表面等离激元法诺共振的调控机理与方法,以及将其用于环境折射率高灵敏度感知的可行性。相关成果不仅有助于加深对石墨烯聚合体光学特性的认识,也将为发展新型光电子器件和光学传感提供新的途径。
法诺共振源于原子系统,引入到光学系统后,成为表面等离激元光子学的研究热点,并在生物传感和非线性光学等领域显示出重要的应用潜力。受材料限制,传统表面等离激元法诺共振存在损耗高、工作频带窄、不可调谐等缺点,应用范围有限。石墨烯作为一种优异的光电子材料,有望弥补上述缺点。本项目旨在探索石墨烯聚合体表面等离激元法诺共振的产生方式、物理机制、调控方法及等离激元共振在环境折射率感知等方面的应用潜力。项目开展的主要研究内容包括:①研究了石墨烯纳米带表面等离激元共振耦合特性,建立了理论模型及方程,揭示了共振耦合机理;探明了石墨烯纳米带二聚体等微纳结构的光谱特性,阐明了其表面等离激元法诺共振的产生方式;②构建了石墨烯纳米带二聚体表面等离激元法诺共振的物理模型,揭示了其产生的物理机制;阐明了石墨烯二聚体表面等离激元法诺共振的调控机理与方法;③探索了表面等离激元耦合共振(包括法诺共振)在环境折射率感知方面的应用潜力;拓展了表面等离激元在增强石墨烯光吸收、类石墨烯二维材料(MoS2)拉曼与荧光辐射等方面的应用前景。相关成果不仅有助于加深对石墨烯光学特性的认识,也将为发展新型二维材料光电子器件和光学传感提供新的途径。本项目培养研究生多名,共发表或接收学术论文20篇,其中影响因子大于3的论文11篇,被引用200余次。3篇入选ESI高被引论文,1篇被选为内封面论文,1篇被选为"编辑精选"。项目负责人获第十三届陕西青年科技奖,入选爱思唯尔2020中国高被引学者和2021年全球前2%顶尖科学家榜单,2021年晋升教授职称。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
硬件木马:关键问题研究进展及新动向
石墨烯动态调控手性表面等离激元结构研究
石墨烯/表面等离激元共振复合材料及其表面增强拉曼效应研究
基于石墨烯表面等离激元的红外光场调控研究
基于石墨烯表面等离激元的亚辐射模式的研究