In order to build molecular junctions based on metal electrodes, we propose here a binary metal nanoparticle electrode array construction strategy and strives to break through the defects of traditional single metal electrodes. The active functional molecules are embedded between the electrodes through chain exchange to establish a functional molecular junction network. This project intends to prepare a binary nanocrystal superlattices (BNSLs) with tunable localized surface plasmon resonance (LSPR), which is used as a plasmonic switch to drive and regulate the active two-states of functional molecules to explore the electronic transport mechanism in the functional molecules. By studying the key factors such as the particle size ratio, concentration ratio, growth environment which affect the growth of BNSLs, it is possible to explore the growth mechanism of precise multicomponent dense superstructures and realize the on-demand modulation of the LSPR peak position of binary electrodes and elucidate the influence of the crystal structure and molecules length on the adjustment of Plasmon resonance absorption peaks. It reveals the intrinsic correlation between electrode spacing and resonance peak position. The controlling mechanism of the LSPR peak shift on the regulation of the two-state will be investigated. The inverse and controllable mechanical movement principle of molecular machines driven by molecular two-states will also be studied. All this will give a solid base to realize the tailored electronic characteristics and synergistic performance of the molecular device.
针对构建基于金属电极的分子结问题,本项目提出了双元金属纳米颗粒电极阵列的构筑策略,力求突破传统单元金属电极的桎梏。通过换链的方式在电极之间嵌接活性功能分子,建立功能化分子结网络。本项目拟制备可调谐等离子激元共振效应(LSPR)的双元纳米颗粒超晶格(BNSLs)结构,并用作等离子开关来驱动和调控功能分子的活性双态,以探讨功能分子的电子输运机制。通过研究颗粒粒径比、浓度比、生长环境影响BNSLs生长的关键因素,探索精控多组元密堆积超结构的生长机制,实现双元电极的LSPR峰位的按需调控,阐明晶体结构和分子长度等因素对调节LSPR峰的影响机理,揭示电极间距与共振峰位的内在关联,探明LSPR峰位偏移控制功能分子活性双态的调节机制,并理解以分子双态驱动分子机器的可逆及可控的机械运动原理。为实现分子器件量身定制的电子特性及协同性能提供设计思想、电极材料依据与实现途径。
基于多元材料协同性能,多元材料超晶格的探索研究为开发多功能集成纳米器件提供了可实现途径和材料支撑。本项目提出了双元金属纳米颗粒电极阵列的构筑策略,力求突破传统单元金属电极的桎梏。本项目探索了多元金属纳米颗粒之间的协同自组装行为,调制多元超晶体的等离子激元共振效应,揭示了Au-Ni和Ag-Ni的双元纳米颗粒超晶体的生长机理,为自组装动力学过程提供了新的调控途径。基于贵金属纳米材料独有的局域表面等离子激元共振效应,更进一步开拓了新的研究方向——太阳能光蒸汽及其在纳米能源方面的应用,特别设计制备了三元纳米复合材料,实现了有效的激子产生和增强的光热转换效率。该工作的创新点在于构筑 1+1+1>3 的材料复合理念与仿生结构有机地结合。不仅从材料协同的角度而且在材料微观结构设计上,双双实现了高效的光吸收和优异的光热能量转化。该工作为解决淡水短缺和能源危机提供了一种新的材料构筑思路,这对未来用于海水淡化和水电联发的实际应用具有重要的指导意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
F_q上一类周期为2p~2的四元广义分圆序列的线性复杂度
金属纳米线纳米间隙电极的可控制备及其应用
柔性SiC纳米阵列电极材料的制备及其超电容特性研究
激波诱导非晶金属晶化以制备超微晶、纳米晶材料的研究
双元过渡金属纳米粒子的可控制备、原子排列和特性研究