Large space manipulator is an important tool for space station assembly, maintenance, load care and astronaut assisted extravehicular operation. It helps to extend the service life of space stations and loads, and get more scientific and economic returns. However, due to the flexible behavior of joints and boom of large arms, it is easy to cause problems such as system oscillation, accuracy reduction and performance degradation, which can not meet the needs of fast, stable and meticulous operation. To solve the above problems, combined with the large space manipulator developed by Harbin Institute of Technology, pseudo excitation and evolution mechanism, solve the flexible multi factor coupling behavior under flexible observation conditions obtained under flexible behavior and external impact force information and situation prediction and interference under the condition of robust controller design and planning method in three major scientific problems. This paper focuses on 4 parts: mechanism analysis and modeling of flexible behavior of large space manipulator, flexible capture control strategy, residual vibration suppression control strategy and collaborative control strategy with carrier platform complex. In order to establish the flexible dynamics evolution model of large space manipulator, the situation prediction method and robustness control strategy of flexible behavior are put forward. Simulation and ground tests verify that it lays the foundation for the development of large space manipulator technology in China.
空间大型机械臂是空间站在轨组装、维护维修、载荷照料和航天员辅助出舱操作等的重要工具,它有助于延长空间站及载荷的使用寿命,获得更多的科研和经济回报。然而,由于空间大型机械臂关节和臂杆的柔性行为,易导致机械臂系统振荡、精度降低和性能退化等问题,无法满足快速、稳定、精细操作的需求。针对以上问题,结合哈尔滨工业大学研制的空间大型机械臂,拟解决多要素关联耦合下柔性行为的激发与演化机理、欠观测条件下柔性行为和外部碰撞力信息的获取与态势预测以及多干扰条件下柔性行为的鲁棒控制器设计及规划方法等三个重大科学问题。重点开展空间大型机械臂柔性行为的机理分析与建模、柔性抓捕控制策略、残余振动抑制控制策略及与载体平台复合体协同控制策略等4项内容研究。从而建立空间大型机械臂柔性动力学的演化模型,提出柔性行为的态势预测方法和鲁棒性的控制策略,进行仿真和地面试验验证,为我国空间大型机械臂技术的发展奠定基础。
空间大型机械臂是空间站在轨组装、维护维修、载荷照料和航天员辅助出舱操作等的重要工具,它有助于延长空间站及载荷的使用寿命,获得更多的科研和经济回报。然而,由于空间大型机械臂关节和臂杆的柔性行为,易导致机械臂系统振荡、精度降低和性能退化等问题,无法满足快速、稳定、精细操作的需求。针对以上问题,结合哈尔滨工业大学研制的空间站问天舱大型机械臂,建立了空间大型机械臂完整的数学模型,分析了关节和臂杆柔性对系统动力学的影响,基于研制的12D传感器(包含六维力矩和六维加速度传感器),开展了多传感器信息融合、柔性抓捕、残余振动抑制等控制策略研究,提出了基于基座反作用力矩估计的协调控制方法,合理规划了机械臂运动,使其对基座姿态扰动最小。提出的方法已应用在空间站问天舱机械臂中,其先后完成了问天舱扩展泵组安装、全景相机抬升、舱外自主应急返回验证,舱外助力手柄安装、载荷回路扩展泵组安装等任务,全部任务圆满完成,同时验证了与航天员协同工作的能力,获得了航天员刘洋“定位精准,无需微调”的赞誉。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于LASSO-SVMR模型城市生活需水量的预测
基于多模态信息特征融合的犯罪预测算法研究
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
敏感性水利工程社会稳定风险演化SD模型
空间柔性机械臂的非线性动力学及运动/振动控制
柔性机械臂动力学与控制综合优化建模理论和方法研究
空间机械臂末端柔性捕获机构动力学与控制优化
大型柔性空间机械臂的地面主动重力补偿研究