With the rapid network formulation of highway system in China, this proposal focuses on analyzing the spatial-temporal patterns of traffic flow in highway from the perspective of network. This study will base on toll data of entrance-exit stations and inductive loop data on the road, apply the paradigm of of multi-task learning in analyzing and online mining real-time traffic flow data of highway system; establish multi-task feature learning model for traffic flow analyzing in highway system, extend the spatial-temporal dynamics of approaches of multi-task learning; investigate the relation patterns and evolution process of highway traffic flow under normal and abnormal traffic conditions, establish abnormal traffic flow recognitio model based on the variation of relation patterns, describe the mechanism of relation and evolution of highway traffic flow; investigate the parallel speeding method and the grouping approach of multi-task learning, implement efficient and effective real-time traffic flow prediction in highway system; investigate the mechanism of compensation based on relation, improve the robustness and reliablity of predition model under data delay or data missing; develop prototype system for the demand of highway management, visualize the process of traffic flow evolution. This proposal will help us understand the relation between each part in the highway system from the theoretical level. From the systematic explanation of the evolution pattern of traffic flow and the accurate predition of traffic flow, this study will lay a solid theoretical foundation for effective monitoring, management and emergence response of highway system.
针对目前我国高速公路快速成网的现状,从网络角度分析省级高速路网交通流的时空演变规律。基于车辆进出(收费)数据和路段线圈数据,采用多任务学习范式,深入分析和在线挖掘高速路网实时交通流数据,构建适用于高速路网交通流分析的多任务特征学习模型,扩展多任务学习方法的时空动态性;研究常态及非常态交通流关联模式和动态演变过程,利用关联关系变化构建交通事件识别模型,探究高速路网交通关联演变机理;研究多任务并行学习方法和任务分组策略,实现高效准确的路网交通流实时预测;研究多任务关联补偿机制,提高预测模型在数据延迟或缺失情况下的鲁棒性和实用性;研发面向高速公路管理需求的原型系统,可视化展示交通流演变过程。课题将从理论层次上系统理解网络条件下高速公路各组成部分之间的联系和影响,通过对交通流演变规律的系统阐释和交通流变化的准确预测,为科学有效的高速公路运营监控、综合管理、应急处置和信息服务提供基础理论和模型支持。
本项目针对目前我国高速公路快速成网的现状,从网络角度分析省级高速路网交通流的时空演变规律,并且针对其演变规律对路网中交通流在特定时刻状态信息进行学习与预测。项目组与地方交通管理部门合作,获得了基于车辆进出路网(收费)节点的数据和路段线圈数据,采用多任务学习范式,深入分析和在线挖掘高速路网实时交通流数据,构建适用于高速路网交通流分析的多任务特征学习模型,扩展多任务学习方法的时空动态性。本项目研究常态及非常态交通流关联模式和动态演变过程,利用关联关系变化构建交通事件识别模型,探究高速路网交通关联演变机理,研究多任务并行学习方法和任务分组策略,实现高效准确的路网交通流实时预测,研究多任务关联补偿机制,提高预测模型在数据延迟或缺失情况下的鲁棒性和实用性,研发面向高速公路管理需求的原型系统,可视化展示交通流演变过程。项目从理论层次上系统理解网络条件下高速公路各组成部分之间的联系和影响,通过对交通流演变规律的系统阐释和交通流变化的准确预测,为科学有效的高速公路运营监控、综合管理、应急处置和信息服务提供基础理论和模型支持。本项目共发表了16篇学术论文,研究成果中的常态及非常态交通流关联模式作为核心技术作为北京市交通规划局的交通大数据分析平台,服务于北京市日常交通管理。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
硬件木马:关键问题研究进展及新动向
基于LASSO-SVMR模型城市生活需水量的预测
基于SSVEP 直接脑控机器人方向和速度研究
城市高速公路网交通流的动态建模与控制
实时交通控制下路网动态配流模型及其应用研究
动态数据驱动的道路交通拥挤演变预测研究
基于出行认知的交通路网动态层级模型研究