Multiphase reaction is the most common and core process in the chemical industry, and it is a key link for chemical enterprises to achieve the goal of product quality improvement, energy conservation and emission reduction. However, the traditional multiphase reaction processes exists the mismatch between mixing and transfer effects and intrinsic reaction rate, which can leads to the problems of low efficiency, side reaction, heavy pollution and big resource waste et al. In addition, rotating packed bed has the advantage of mixing and mass-transfer intensification, and the microwave has the advantage of heat-transfer intensification. In view of these, the project of study on the mixing, transfer and reaction mechanism during multiphase-flow catalytic oxidation process in the higee-microwave coupling field was proposed. The mixing and transfer law and the reaction kinetics of lignin catalytic oxidation in the multiphase-flow catalytic oxidation process in a coupled higee-microwave reactor was investigated, and the related mathematical models will be established, also, the strengthening mechanism in this process will be explored. Based on these, a novel process of catalytic oxidation of lignin in the coupled the higee-microwave reactor will be studied. Through the study on the project, a new method and theory for the coordination between the physics process and the reaction process during multiphase-flow reaction process, which provides a novel technical route for the multiphase-flow reaction process and lays a scientific foundation for its industrial application.
多相反应是化学工业中最普遍与最核心的过程,是化工企业实现提质、提效、节能减排目标的关键环节。本项目针对传统多相反应存在混合传递效果与反应不匹配而导致的反应效率低、副反应多、污染重、资源浪费大等问题,结合超重力反应器在强化传质和混合方面的优势以及微波在强化传热方面的优势,提出开展超重力微波耦合调控多相流催化氧化过程机制研究。研究超重力微波耦合场内多相流混合、传递规律以及催化氧化木质素降解反应动力学及调控机制,并建立相应的数学模型,创制新型超重力微波耦合反应器,开发超重力微波耦合场内催化氧化木质素降解新工艺。形成超重力微波耦合调控多相流物理过程效率与反应进程协调匹配的新方法和新理论,为多相流反应过程提供一条新颖的技术路线,为其工业应用奠定科学基础。
多相反应是化学工业中最普遍与最核心的过程,广泛存在于石油化工、煤化工、生物化工等过程,是化工企业实现提质提效、节能减排目标的关键环节。多相反应过程的核心是反应器,其创造的物理环境与反应过程匹配情况(“三传一反”,传质、传热和动量传递)直接决定了过程的能效、产品收率和后处理成本等。本项目针对传统多相反应过程存在混合传递效果与反应不匹配而导致的反应效率低、副反应多、污染重、资源浪费大等问题,结合超重力反应器在强化传质和混合方面的优势以及微波在强化传热方面的优势,本项目创新性提出超重力耦合微波调控多相流反应过程“三传一反”新思路,并开展了超重力微波耦合场内“三传一反”规律及调控机制、新型超重力微波耦合反应器创制和超重力微波耦合强化木质素降解工艺研究。.通过项目实施,掌握了超重力微波耦合场内多相流混合、传递过程的调控机制,建立了超重力微波耦合调控传递/混合与反应协调匹配新方法,丰富了过程强化理论,为多相流反应过程强化提供新方法。创制出适用于多相流反应过程的超重力微波耦合反应器,开发出超重力微波耦合强化木质素降解新工艺,获得了优化工艺参数,通过集成及优化,最终形成超重力微波耦合场内多相流催化氧化木质素降解新技术,为其工业应用提供了基础数据和技术支撑。项目共发表 SCI 论文20篇,申请发明专利6项;培养研究生9名,其中博士生2名。目前所开发的超重力微波耦合强化多相流反应技术已经应用于丙酮肟醚化过程,实现了醚化过程的连续化,取得了显著的提质增效效果,促进了相关企业的技术升级,为企业带来了良好的经济效益。
{{i.achievement_title}}
数据更新时间:2023-05-31
针灸治疗胃食管反流病的研究进展
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
面向云工作流安全的任务调度方法
中外学术论文与期刊的宏观差距分析及改进建议
空气电晕放电发展过程的特征发射光谱分析与放电识别
超重力微波耦合强化碳酸氢锂热解过程机制研究
膜分离/多相Fenton-like催化氧化耦合系统的构建及其耦合特性研究
水中难降解有机污染物激发因子耦合的多相催化氧化过程与控制原理
气-固多相光催化氧化过程中H2-O2耦合效应及作用机理研究