Molecular imprinting based electrochemical sensors have good suitability and great developing potential, to further enhance their performance is very important for promoting their widely practical application. In this project, uniform and stable multifunctional (such as extraction, amphipathy, wetting, viscosity and conductivity, etc.) thin ionic liquid (IL, including polymerizable IL monomer) layer will be immobilized on conductive nanomaterial surface through adsorption/assemble or chemical bonding. Then unique nanomaterial/IL/solution (for polymerization) interface will be constructed and molecular imprinting will be performed by electrochemical or chemical polymerization. After that, we plan to develop novel soft sensing films with porous nanostructures. Thus, thin IL layer, nanomaterial and surface-imprinting technique can be well combined and their advantages can be fully utilized. Hence, the effective imprinted capacity, specific recognition ability and binding speed will be enhanced simultaneously, and the comprehensive property of the resulting sensors can be improved greatly. Furthermore, through this way the molecular imprinting on nanomaterial surface will become more controllable, and its suitable range will become wider. On this basis, a sensing platform based on the nanomaterial-IL-molecularly imprinted polymer composite films will be built, the interaction mechanisms of different components and the controlling methods of the structure and property of the sensing films will be explored. For the determination of mycotoxin the preparation procedures and sensing strategies will be optimized further. Afterwards, electrochemical sensors with high performance and application feasibility will be fabricated, and corresponding highly sensitive electroanalytical methods will be developed.
分子印迹电化学传感器适用范围广,发展潜力大,进一步提高它的性能是促其广泛应用的关键。本项目拟通过吸附组装、化学键合将具有诸多功能(如萃取、两亲、润湿、粘合、导电作用等)且均匀稳定的离子液体(IL,包括可聚合的IL)薄层修饰到纳米材料表面,构建独特的纳米材料/IL薄层/聚合溶液反应界面,进行电化学、溶液化学聚合印迹,进而研制具有多孔纳米结构的柔性分子印迹传感膜。这样可将IL薄层、纳米材料和表面分子印迹有机地结合起来,充分发挥它们的优势,实现有效印迹容量、特异性识别能力和结合速度的同步提高,从而全面改善传感器的性能。并由此增强纳米表面印迹方法的可控性,拓宽其适用范围。在此基础上,建立基于纳米材料-IL-分子印迹聚合物复合膜的传感平台,探讨各组分的作用机制及膜结构性能的调控方法,并针对霉菌毒素的测定优化制备方法与传感策略,研制高性能电化学传感器,建立它们的高灵敏检测方法。
分子印迹电化学传感器适用范围广,发展潜力大,目前制约其广泛应用的主要因素是分子印迹密度低、识别速度慢、选择性不够高和重现性不够好。本项目通过不同方式将具有诸多功能(如萃取、两亲、导电作用)的离子液体(IL)与纳米材料表面印迹结合,提升有效印迹容量、特异性识别能力和结合速度,研制了系列具有良好性能的传感器。 .首先,制备了系列IL功能化的纳米材料,对它们的形貌、结构组成和电化学性能进行了表征。以咔唑、邻氨基硫酚、对乙烯基苯甲酸、丙烯酰胺等为单体,通过可控电化学和化学聚合方法在IL功能化纳米材料表面分别制备了展青霉素、双酚A等的印迹聚合物,并探讨了由此构建的传感器的性能和IL的影响。发现IL的萃取、粘附、静电导向等作用,可促进印迹容量和吸附速度等的提高,从而改善传感性能。.其次,采取在聚合溶液中加入IL、IL功能化纳米材的方式将其引入纳米材料表面分子印迹中,研制了玉米赤霉烯酮、芦丁等的复合印迹材料和相应的传感器。掺杂的IL对印迹效果与所得材料的传感性能有良好的改进作用,同时可与固定的校正探针和磁场导向协同;制备的传感器表现出良好的实用性。.此外,以IL为聚合单体、交联剂,在纳米材料表面进行可控原子转移化学聚合印迹,制备出金霉素等的分子印迹复合材料和传感器。所得材料的吸附性能(包括吸附容量、选择性、动力学和耐用性)优于采用其它方法和单体制备的分子印迹材料,密度泛函数计算表明IL单体与模板间存在多重作用。因此,所得传感器具有好的分析性能。.针对不同霉菌毒素传感,结合IL、纳米材料表面印迹、结构导向及双替代模板等,合成了几种分别适合不同霉菌毒素(如赭曲霉毒素A、桔霉素、玉米赤霉烯酮等)高选择性识别与高效富集的分子印迹材料。并以它们为敏感材料构建了重现性好、实用性强的单信号、双信号比率型传感器,建立了多种试样的有效检测方法。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
路基土水分传感器室内标定方法与影响因素分析
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于二维材料的自旋-轨道矩研究进展
结核性胸膜炎分子及生化免疫学诊断研究进展
基于离子液体的分子印迹支撑离子液膜的形成机制及其构建
分子印迹表面等离子共振传感器检测小分子污染物
咪唑类离子液体表面印迹聚合物的合成及分析应用
蛋白质表面分子印迹新方法的研究