X-ray excited optical luminescence (XEOL) is a spectroscopic technique that monitors light emission from matter in the optical region (ultraviolet, visible, and near-infrared) on absorption of X-rays, often tunable X-rays from a synchrotron light. XEOL has been shown to be a powerful tool for investigating the local chemical environment of a site that gives rise to a particular luminescent band by examining the X-ray energy dependence of the various luminescence bands across various absorption edges. XEOL has been successfully used to study the chemical origin of optical light in the luminescent materials. Recently, taking advantage of the pulsed nature of synchrotron radiation enables the study of temporal behavior, and hence further characterization of the luminescence of the complex systems. Time-resolved XEOL (TRXEOL) monitors the time dependence of the emission intensity (decay curve) following absorption of a synchrotron X-ray pulse (typically sub nanosecond bandwidth and 10–100 ns repetition rates). From the decay curve, one can obtain the lifetime of the excited state and set a desired time window for luminescence spectral measurements to study the energy transfer and dynamics of the materials at excited states. In this proposal, we propose to set up the first movable TRXEOL system in China, connecting to XMCD, XPS and XAFS beamlines at National Synchrotron Radiation Laboratory (NSRL) at Hefei. The system can also be applied to the suitable beamlines at Beijing Synchrotron Radiation Facility (BSRF) and XAFS beamline at Shanghai Synchrotron Radiation Facility (SSRF). Based on the XEOL and TRXEOL techniques, the Ce3+ and Pr3+ activated scintillators will be studied. Combined XEOL/TRXEOL with other synchrotron techniques such as X-ray absorption spectroscopy, VUV spectroscopy, etc., the structures and luminescence property of the scintillators will be investigated and luminescence mechanism will be elucidated.
理解发光材料结构与性能的关系是阐明材料发光机理的基础。与传统实验室研究手段相比较,基于同步辐射光源的X射线激发发光谱(XEOL)技术由于具有对元素、价态以及激发通道的激发选择性,在研究材料发光机理方面具有明显优势。特别是时间分辨的XEOL技术,可以进一步区分检测发光材料的发光途径与过程,并能揭示发光过程中的能量传递及其动力学,大大提高了对复杂发光体系的研究能力。目前国内还没有XEOL装置和相关研究报导。本项目将基于合肥光源相关线站建立一套可移动的具有时间分辨的XEOL装置,并可在北京光源、上海光源相关线站上联用。基于XEOL技术,我们将重点研究稀土Ce3+、Pr3+离子激活的新型闪烁发光材料的发光性能与构效关系,厘清稀土闪烁材料的发光途径与能量传递过程,探索开发新型稀土闪烁发光材料。
理解发光材料结构与发光性能关系是阐明材料发光机理的基础,与传统实验室研究手段相比较,基于同步辐射光源的X射线激发发光谱(XEOL)技术由于具有对元素、价态以及激发通道的激发选择性,在研究发光材料机理方面具有明显优势。特别是时间分辨XEOL技术,可以进一步区分检测发光材料的发光途径与过程,并能揭示发光过程中的能量传递及其动力学,大大提高了对复杂发光体系的研究能力。通过本项目的实施,在合肥光源与上海光源相关线站上建立国内首套具有时间分辨的XEOL装置,实现了时间分辨的XEOL技术的应用。利用该装置开展了稀土闪烁材料以及其他发光材料的发光性能、机理,激发态的能量传递过程研究。在充分认识晶体场及电-声耦合作用,综合考虑基质化合物的组成、结构和格位占据等对5d能级及其发光性质的影响基础上,设计、合成了具有理想组成和结构的系列稀土发光材料。通过VUV-vis光谱研究导带以下全光谱范围和X-射线激发下材料的发光性质及XANES-XEOL光谱研究,分析了不同配位微环境下Ce3+/Pr3+/Eu2+的5d能级重心、晶体场劈裂和Stokes位移,认识了温度和掺杂浓度与发光及其衰减特性的关系,理解了不同激发方式对发光和能量传递的影响,并在此基础上探索Ce3+/Pr3+/Eu2+离子激活的新体系闪烁材料。基于XEOL谱学的发光材料发光过程及机理研究为探索新型发光材料提供有效途径,并反之促进理解XEOL的过程机理,提高了XEOL的研究能力。项目共发表SCI文章90篇,获得发明专利授权8项。
{{i.achievement_title}}
数据更新时间:2023-05-31
Intensive photocatalytic activity enhancement of Bi5O7I via coupling with band structure and content adjustable BiOBrxI1-x
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
钢筋混凝土带翼缘剪力墙破坏机理研究
基于二维材料的自旋-轨道矩研究进展
应用同步辐射X射线寻找新的无机闪烁材料
同步辐射高分辨X射线发射谱方法及其在材料电子结构中应用
同步辐射X射线高分辨粉末衍射技术及其应用
同步辐射小角X射线散射先进技术研究及若干应用