Because of such characteristics as time varying, nonlinear coupling, dense modes and multiple excitations, there is quite large possibility of occurrence of parametric resonance and forced resonance in the flexible manipulator. These resonance problems are important reasons for causing various complex dynamic phenomena like large amplitude oscillation, abrupt dynamic performance deterioration, instability and so on. In this project, the flexible manipulator with strong coupling nonlinearity, low fundamental frequency, large flexibility is our concern and its principal parametric resonance and primary resonance problems caused by rigid motion are researched. We aim to break through existing research restrictions and mainly research: nonlinear parametrically excited/forced vibration modeling for the flexible manipulator with flexible controllable local degree of freedom; energy exchange mechanism of internal resonance based on mode coupling; saturation energy transfer and dissipation based on cross-modal penetration; regulation methods of the vibration absorber with flexible controllable local degree of freedom; semi-active control method, implement strategy and efficient algorithms of parametric and forced resonance via flexible controllable local degree of freedom, etc. The related research achievements aim to conduct innovative research on the vibration reduction principles and control methods of parametric and forced resonance, provide a group of systematic theoretical methods and implementation schemes for strong energy transfer and dissipation of parametric and forced resonance, and make contributions to enhance dynamic accuracy, motion stability, anti-disturbance ability of the flexible manipulator and promote progress of semi-active vibration absorption method in the field of flexible multi-body system.
柔性机器人的时变耦合、模态密集、多种激励等特点,使其存在发生参激共振和强迫共振的极大可能性。这些共振问题是导致机器人出现大幅振荡、动态性能急剧恶化、失稳等复杂动力学现象的重要原因。本项目以高度耦合非线性、低基频大柔性机器人为研究对象,针对由刚性运动引发的主参激共振和主共振问题,突破已有研究束缚,重点研究:具有柔性可控局部自由度的柔性机器人非线性参激/强迫振动建模;基于模态耦合的内共振能量交换机制;跨模态渗透的饱和能量迁移耗散机理;柔性可控局部自由度吸振器的调控方法;基于柔性可控局部自由度的柔性机器人参强共振半主动式控制方法、实现策略与高效算法等。研究成果旨在参强共振的减振机理与控制方法上有所创新,为柔性机器人参强共振的强能量迁移与耗散提供一套较为系统的理论方法和实施方案,为提高柔性机器人的动态精度、运动稳定性与抗扰能力以及推动半主动式吸振方法在柔性多体系统振动控制领域的发展做出贡献。
柔性机器人的时变耦合、模态密集、激励多样等特点,使其存在发生参激共振和强迫共振的极大可能性。这些共振问题是导致机器人出现大幅振荡、动态性能急剧恶化、失稳等复杂动力学现象的重要原因。本项目以高度耦合非线性、低基频大柔性机器人为研究对象,针对由刚性运动引发的主参激共振和主共振问题,突破已有研究束缚,提出了柔性可控局部自由度的概念与理论模型,具有可控频率、可控阻尼、可控平衡位置的新特征;提出了基于饱和原理与柔性可控局部自由度的新型吸振器控制模型,设计线性反馈与非线性反馈联合作用的控制器实现参强共振控制;基于内共振,构建了跨模态渗透的模态耦合能量交换机制,提出了实现跨模态渗透的模态耦合能量交换的充要条件和判据;通过研究柔性机器人参激强迫振动控制方程,提出了柔性机器人参强共振的饱和控制机理,设计了柔性机器人参强共振的吸振控制器;研究了吸振器频率与共振响应的关系、吸振器频率与频带分布的关系以及吸振器调频控制规律,提出了柔性机器人参强共振的饱和控制方法和实施方案。研究成果在参强共振的减振机理与控制方法上有所创新,为柔性机器人参强共振的强能量迁移与耗散提供了一套较为系统的理论方法和实施方案,为提高柔性机器人的动态精度、运动稳定性与抗扰能力以及推动半主动式吸振方法在柔性多体系统振动控制领域的发展做出贡献。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于SSVEP 直接脑控机器人方向和速度研究
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
掘进工作面局部通风风筒悬挂位置的数值模拟
基于余量谐波平衡的两质点动力学系统振动频率与响应分析
可控局部自由度柔性机器人的动力学与稳定性研究
多自由度柔性关节机器人奇异摄动控制若干问题研究
基于EAP的机器人仿生柔性驱动控制
柔性机器人的受限运动控制