Antibiotic pollution has a serious threat to the water safety and human health, therefore, to seek an economic and effective remediation technology has a good theoretical and practical significance. Iron carbon micro-electrolysis coupling advanced oxidation technology has been widely used to treatment of various wastewaters. However, the iron carbon materials would be passivated completely which would affect the wastewater treatment efficiency seriously. Therefore, it is urgent to develop a highly efficient and stable iron carbon micro-electrolytic material. In this project, an integrated iron carbon micro-electrolysis material is prepared based on biochar and zero-valent iron, the pre-magnetization technology will be used to improve the performance of the iron carbon materials, and the enhancement mechanism of pre-magnetization on iron carbon micro-electrolysis and degradation mechanism of antibiotic by Pre-magnetized ZVI-BC/PS system will be studied. The preparation conditions biochar and ZVI-BC will be studied firstly. Then, On this basis, a systematic investigation on the removal efficiency of antibiotic in the coupling system with Pre-magnetized ZVI-BC and presulfate will be conducted in the project. In addition, the interaction mechanisms of the coupling system, and degradation process, as well as mechanism of contaminants will be investigated. Meanwhile, the reuse stability of ZVI-BC in this coupling system and the applicability of Pre-ZVI-BC/PS system to practical wastewater will be explored. Through the study, a theoretical and scientific supports can be provided with development of integrated iron carbon micro-electrolysis materials and mechanism of retarding material passivation. Additionally, the study can indicate a new technical process and method to improve antibiotic removal in wastewater.
抗生素污染严重威胁着用水安全和人体健康,因而寻求经济有效的处理技术具有重要的理论和现实意义。铁碳微电解耦合高级氧化技术能高效处理难降解有机废水,但传统的铁碳材料易板结和钝化,因此亟需开发高效稳定的微电解材料,寻找延缓材料钝化的方法。本项目拟以生物炭和零价铁为主要原料制备一体化铁碳,并利用磁场预磁化提高铁碳材料的性能延缓钝化,开展预磁化铁碳/过硫酸盐体系去除水中抗生素的研究,探索预磁化对铁碳微电解的强化作用机制和抗生素降解机理。首先明确生物炭和铁碳材料特征和性能;在此基础上系统研究预磁化铁碳/过硫酸盐体系对抗生素的去除效果;探讨耦合体系的相互作用机制和污染物去除过程及降解机理;并揭示在该耦合体系下铁碳重复利用稳定性和体系对实际废水的适用性。本项目为一体化铁碳复合材料研制及延缓钝化的机理研究提供较系统的理论基础和科学依据,为抗生素污染物的有效去除提供新的技术路线和方法。
抗生素等新兴污染物具有来源广、危害大等特点,严重威胁着用水安全和人体健康,而常规处理方法难以将其彻底去除。铁碳微电解耦合高级氧化技术能高效处理难降解有机废水,但传统的铁碳材料易板结和钝化,因此亟需开发高效稳定的微电解材料。本项目从铁碳材料的制备研究出发,通过设计和改性新型铁碳材料,拓宽其pH适用范围,增强其活化过氧化氢和过硫酸盐的能力,提高其对有机污染物的降解效率。.(1)制备了新型一体化铁碳微电解材料,采用预磁化提升材料的微电解性能,增强其去除污染物的能力。考察了不同反应条件对污染物去除效果的影响,确定了体系中起主要作用的活性物质,阐释了预磁化提升微电解材料对有机污染物降解的机理,评估了反应体系的稳定性。.(2)制备了粉末状铁碳材料和氮掺杂铁碳材料,考察了不同体系对有机污染物的降解效果,探究了铁碳材料、H2O2、PS、污染物的投加量和pH对污染物的降解影响,从反应前后铁碳材料的表征、活性物质的产生、电子转移等方面入手,全面解析了不同体系中污染物的降解机理。另外,评估了材料的可重复利用性和在实际废水中的处理效果。.(3)研究了以生物质为前体制备一体化铁碳材料在过硫酸盐体系中对有机污染物的降解。探究了不同反应条件的影响,结合自由基猝灭实验、EPR测试和电化学工作站分析了污染物去除过程中活性物质的产生和电子转移情况,再者结合污染物的降解途径和理论计算的结果,全面揭示了反应机理。同时,对材料的可重复利用性和对实际废水的处理效果进行了评价,分析了技术实际应用的可能性。.本项目的研究对于铁碳材料制备及延缓钝化的机理研究提供较系统的理论基础和科学依据,为开发绿色高效的材料用于实际废水处理提供新思路和科学依据。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
涡度相关技术及其在陆地生态系统通量研究中的应用
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
农超对接模式中利益分配问题研究
中国参与全球价值链的环境效应分析
新型碳基材料高效活化过硫酸盐及其去除废水中抗生素的机制研究
太阳光/电共促活化过硫酸盐强化渗滤液深度处理中PPCPs去除的机制
负载型钴系复合过渡金属材料活化过硫酸盐降解抗生素类污染物的效能和机理
差异性活化过硫酸盐对水中结合态残留抗生素微界面去除与迁转机制