One of the effective ways to improve the strength and ductility of Mg alloys is adding rare earth elements (RE) along with transition metal (TM) to form the long period stacking ordered phases (LPSO).LPSO is one of the fundamental issues in the Mg-RE alloys. It is important to understand the phase equilibria, transformations and crystal structures of LPSO phases under different temperature, composition and service conditions. It is proposed to develop a set of self-consistent thermodynamic parameters for Mg-Ni-Y and Mg-Ni-Y-H systems with emphasis on the LPSO phases with CALPHAD method combining with DFT calculation for thermodynamic properties and crystal structure optimization. The thermodynamic conditions for the existence of LPSO phases and the hydrogen-induced transformation of LPSO phases will be investigated. LPSO-containing magnesium alloys will be prepared by advanced processing technology and their mechanical properties will be (quasi) in-situ tested. The experimental methods of in-situ XRD, FIB, HRTEM and EBSD combined with the molecular dynamics (MD) and phase field methods will be used to investigate the crystal structures and phase transformation mechanism for LPSO phases under different temperature, composition and hydrogen atmosphere. Strengthening mechanism for LPSO-containing magnesium alloys with single or multiple phases will be studied. The theories and methods for controlling the phase constitution of the strengthening structures in LPSO-containing magnesium alloys will be provided to increase their strength and improve their ductility performance.
镁合金强韧化的有效方法之一是添加稀土及过渡金属元素获得长周期堆垛有序结构(LPSO),它是近年来稀土镁合金研究的关键基础问题之一,但其相平衡、相变和晶体结构随成分、温度及服役条件的变化规律亟待深入研究。本项目以Mg-Ni-Y合金为研究对象,基于CALPHAD方法,辅以DFT优化及热力学性质计算,建立以LPSO为核心的Mg-Ni-Y和Mg-Ni-Y-H热力学相平衡数据库,预测出LPSO存在的成分和温度范围,以及氢诱导LPSO相变的热力学条件,指导制备出以LPSO为主体的镁合金,并原位测试其力学性能;采用原位结构表征技术结合分子动力学和相场模拟,从微观、介观尺度上系统地研究成分、温度、及氢诱导下合金中的LPSO晶体学特征及相变机理,揭示含LPSO的单相或单晶及多相复合时对合金的强化效应规律,实现有依据地调控合金中强化结构的物相组成,为设计制备高强度高韧性的含LPSO镁合金提供理论依据。
长周期堆垛有序结构(Long Period Stacking Ordered Structure,LPSO)可以实现镁合金的强韧化,快速凝固制备的Mg97Zn1Y2合金的屈服强度达到610MPa。然而LPSO物相强化机理,特别是从晶体结构、弹性性能和热稳定性等因素对合金最终物理性能的影响机制,缺乏深入系统的研究。. 构建以LPSO为核心的Mg-Ni-Y系和Mg-Ni-Y-H系热力学数据库。利用高分辨透射电镜厘清不同LPSO相的晶体结构,发现新型12R型长周期有序结构相,构建其原子模型,12R具有P1的空间群,a=b=1.112nm,c=3.2126nm,α=β=90°,γ=120°,理论成分为Mg70.8Ni12.5Y16.7。通过第一性原理计算不同LPSO相的形成焓和转变能,实验测定结合第一性原理计算的方式确定以LPSO相为核心的富镁角相平衡关系,构建的Mg-Ni-Y体系和Mg-Ni-Y-H体系热力学数据库可用于指导结构材料和功能材料的设计。. 利用热力学数据库设计18R氢诱导分解制备出的Mg+Mg2Ni+YH2储氢纳米复合材料,18R可以在0.05MPa H2和280°C的条件下90分钟内分解80%,产生6wt.% Mg,50wt.% MgH2,15wt.% YH2, 9wt.% Mg2Ni,和 3wt.% Mg2NiH4,在620次循环后仍具有4.3wt.%的储氢容量,高密度且弥散的YH2纳米晶为镁和氢化镁之间的转化提供了充足的氢源和异质形核中心,纳米复合体系内的高密度相界是氢扩散通道,促进了氢原子的传输。利用第一性原理计算不同LPSO相的弹性性能,根据模量错配强化公式评估不同LPSO相的强化效果,14H相在Mg-Ni-Y体系中是强度增量最大的物相,因此,可以利用热力学数据库选择合适的热处理条件,使12R,10H和18R等LPSO相转变成14H,提升合金强度。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
Identification of the starting reaction position in the hydrogenation of (N-ethyl)carbazole over Raney-Ni
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
当归补血汤促进异体移植的肌卫星细胞存活
长程有序镁基合金吸/放氢过程中结构演变与储氢性能
长周期堆垛有序结构与镁基体之间界面结构的电子显微学研究
纳米压印技术调控结晶-非晶嵌段共聚物薄膜长程有序结构
Ti-Cr合金中相界面结构以及相变引起的长程应变场