In the project, numerical simulation and experimental investigations on the single DNA molecules translocation through a nanopore in nanofluids will be carried out aiming to solve the key problems in the study of the 3rd-generation DNA sequencing, and the dynamics mechanism of the single DNA molecules in nanofluids and the interactions between the DNA and external fields will be explored, particularly: (1) According to the basic principles of lattice Boltzmann method, Brownian dynamics method and immersed boundary method, an originality multi-fields coupled model will be established, and the high-performance algorithms will be developed subsequently; (2) A silicon/carbon-based micro- and nano- composited channel will be manufactured, and an experimental apparatus for manipulation and characterization of DNA translocation through a nanopore will be built; (3) Numerical simulation and experimental studies on the transport process of DNA in nanofluids will be performed, especially in studying the dynamic behavior of DNA under the nanoscale flow field, thermal field and electronic field environment and the mechanism of DNA's dynamic behavior responding to the changes of external fields. This project is of great importance in further developing the nanoscale fluid dynamics of DNA, and it will provide theoretical and technical supports for designing and manufacturing DNA sequencing instruments of low cost, high performance and high reliability.
本项目针对第三代DNA测序研究中的关键问题,综合采用数值模拟和实验研究两种手段,研究纳流体环境下单个DNA分子的动力学行为,探索DNA与外场之间的相互作用机理,具体而言:(1) 根据格子玻尔兹曼方法、布朗动力学方法和浸入式边界方法的基本原理,建立研究纳流体环境下DNA动力学行为的多场耦合数值模型与高性能模拟方法;(2) 研制基于硅基/碳基纳米孔复合制备工艺的微纳复合通道,搭建操控与表征DNA过纳米孔行为的实验装置;(3) 通过数值模拟与实验研究,定量研究DNA纳尺度流场、电场和温度场共同作用下的动力学行为,揭示DNA运动行为响应外场变化的机制。本项目对进一步发展DNA纳流动力学理论体系具有重要意义,将为设计和制造低成本、高性能、高可靠性的DNA测序仪器提供理论支撑和技术支持。
本项目综合采用数值模拟和实验研究两种手段,研究了微尺度流场条件下生物粒子(血细胞、DNA)的动力学行为,探索了生物粒子与外场之间的相互作用机理。我们根据格子玻尔兹曼方法、布朗动力学方法和浸入式边界方法的基本原理,建立了用于研究流场环境下生物粒子动力学行为的多场耦合模型与高性能算法,研制了基于硅基/碳基纳米孔复合制备工艺的微纳复合通道,搭建了操控与表征微纳生物粒子动力学行为的实验装置。通过数值模拟与实验研究,定量研究了微纳生物粒子在多物理场共同作用下的动力学行为,揭示了粒子运动行为响应外场变化的机制。本项目对进一步发展微纳尺度流体动力学具有重要意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
DNAgenie: accurate prediction of DNA-type-specific binding residues in protein sequences
神经退行性疾病发病机制的研究进展
带有滑动摩擦摆支座的500 kV变压器地震响应
非牛顿流体剪切稀化特性的分子动力学模拟
血管内皮细胞线粒体动力学相关功能与心血管疾病关系的研究进展
微流体环境下受限大分子链的动力学模拟研究
微纳体系中流体输运与控制的分子动力学研究
单个DNA分子反应实时原位纳米检测表征新方法研究
基于扫描探针显微术的单个DNA分子介电性质的研究