Recently, the stochastic nonlinear systems have received much attention. For the above kind of systems, the control design problem mainly considers the smooth stabilization under locally Lipschitz continuous condition. However, we note that many practical systems inherently contain non-smooth nonlinearities, or could introduce the non-smooth nonlinearities by control design, which yields that the smooth-based control method can not be applied. To this end, this proposal will focus the research on the non-smooth stabilization of a typical kind of stochastic nonlinear systems, i.e., the triangular stochastic nonlinear systems. First of all, under the non-Lipschitz continuous condition, we will establish the globally asymptotic stability theory in probability for stochastic nonlinear systems. Next, based on the above stability theory, we will study the finite-time stabilization problem in probability for locally Lipschitz continuous lower-triangular stochastic nonlinear systems and the non-smooth stabilization for non-Lipschitz continuous lower-triangular stochastic nonlinear systems. Finally, we will consider the problem of non-smooth stabilization of upper-triangular stochastic nonlinear systems with higher-order nonlinearities and lower-order nonlinearities, respectively. This proposal could provide the solid theoretical basis for perfecting the stochastic nonlinear systems theory.
随机非线性系统是近年来的一个研究热点。针对此类系统的控制设计,目前主要考虑系统在满足局部Lipschitz连续条件下的光滑镇定。然而,注意到许多实际系统本身含有非光滑的非线性动态,或者在控制设计中引入了非光滑项,从而导致基于局部Lipschitz连续的光滑性方法无法运用。基于此,本项目针对一类典型的随机非线性系统-三角结构随机非线性系统,研究其非光滑镇定问题。首先,在非Lipschitz连续条件下,建立随机非线性系统依概率全局渐近稳定性理论。然后,基于上述稳定性理论,针对下三角随机非线性系统,在局部Lipschitz连续情况下,研究其依概率有限时间镇定问题;在非Lipschitz连续情况下,研究其非光滑镇定问题。最后,对具有高次非线性和含有低次非线性的上三角随机非线性系统,研究其非光滑镇定问题。本项目的研究将为完善随机非线性系统的控制理论提供坚实的基础。
一般来说,实际系统或多或少都含有随机和非线性因素。利用随机非线性模型对系统进行描述,并结合随机过程的知识来研究系统的动态规律,具有重要的理论和实际意义。若直接用线性控制方法对随机非线性系统进行研究,则需要线性化系统,而日益增长的高性能要求难以得到满足。故采用非线性控制方法来保证系统的全局性能,而非光滑控制方法是近年来发展起来的一种先进的非线性控制方法。另一方面,注意到许多实际系统本身含有非光滑的非线性动态,或在控制设计中引入了非光滑项,从而导致基于局部Lipschitz连续的光滑性方法无法应用。基于此,本项目针对随机非线性系统,研究其非光滑镇定问题。. 本项目按照研究计划,基本完成了预定的研究内容。下面从理论和应用两个方面进行总结。在理论方面,对随机非线性系统建立了随机Barbalat's引理,此基础之上,针对具有ISS/iISS供应率不确定和噪声的下三角非线性系统,设计了输出反馈控制器;针对带马尔科夫跳的随机时滞系统,在更弱的假设条件下得到其均方指数稳定的滤波器设计方案;针对驱动子系统为上三角结构的级联系统,基于ISS理论,给出非光滑控制器的构造方案;针对一类随机非线性系统,通过设计改进的积分滑模面和滑模控制器,设计了积分滑模控制策略,使得闭环均方指数稳定,去除了已有方法对系统参数的约束。上述理论的实际应用方面,利用非光滑控制理论,针对农业拖拉机的自主导航控制问题,提出基于饱和控制技术的控制器设计方法;针对DC/DC变换器系统,设计了终端滑模控制器,并在功率变换器的实验平台上,实现了二阶滑模控制方案;在不确定性由非负函数限定的情况下,设计了新的二阶滑模控制算法,并将其运用到倒立摆系统的控制中。. 上述研究成果表明本项目在项目组成员的共同努力下,已基本完成预定目标。非光滑控制方法大大改善了分析和设计随机非线性系统的复杂性,提高了系统的收敛性能和抗扰动性能,具有非常重要的理论和应用价值。
{{i.achievement_title}}
数据更新时间:2023-05-31
EBPR工艺运行效果的主要影响因素及研究现状
多能耦合三相不平衡主动配电网与输电网交互随机模糊潮流方法
复杂系统科学研究进展
奥希替尼治疗非小细胞肺癌患者的耐药机制研究进展
带有滑动摩擦摆支座的500 kV变压器地震响应
非光滑非线性系统的随机分叉
随机非线性系统镇定、跟踪及采样控制
非光滑随机系统动力学研究
随机非线性系统有限时间镇定及渐近镇定理论研究