Macrophage polarization and energy metabolism are closely related: M1 macrophage produces energy by glycolysis, M2 macrophage produces energy by oxidative phosphorylation. Recent studies indicate that pyruvate kinase M2 (PKM2),the rate limiting enzyme of glycolysis,occurred in polymerization allosteric which can inhibit transcription of inflammatory mediators and promote the secretion of anti-inflammatory cytokines; in the process, cell metabolism by fermentation of sugars solution turn for oxidative phosphorylation, but concrete mechanism is unclear. Our team revealed that after treatment of pkm2 allosteric agent DASA-58, PGC-1 protein beta transcription is activated in Kupffer cells (KCS) by RNA SEQ sequencing. Therefore, we hypothesized that allosteric of PKM2 inhibits glycolysis, promote M2 polarization and inhibited excessive inflammatory response of sepsis by oxidative phosphorylation -PGC-1 beta pathway. This project selects KCs as target cells and energy metabolism as the breakthrough point, use endotoxin stimulated mouse model, metabolic inhibitors and PGC-1 beta -/- mice to clarify the role and the exact mechanism of pkm2 in the polarization of KCs , in order to do some exploratory work for the clinical treatment of sepsis induced liver injury.
巨噬细胞(MΦ)功能极化与其能量代谢途径密切相关:1型MΦ以无氧糖酵解供能为主,而2型MΦ以氧化磷酸化供能为主。最近发现,糖酵解途径限速酶-丙酮酸激酶2(PKM2)发生二/四聚化变构后,能抑制炎症介质转录、促进抗炎因子分泌;在此过程中,细胞代谢由糖酵解转为氧化磷酸化,但具体机制还不清楚。本项目组通过RNA-seq测序发现,PKM2变构剂作用于体内最大MΦ群-Kupffer细胞(KCs)后,线粒体呼吸调节因子PGC-1β的转录被激活,但该蛋白是否参与此极化过程尚不清楚。我们推测PKM2自身变构后能抑制糖酵解,通过四聚化-氧化磷酸化-PGC-1β通路促进M2极化,抑制脓毒症过度炎症反应。因此,本项目选择KCs为靶细胞,以能量代谢为切入点,分离KCs并建立M1/2模型,使用基因敲除和代谢激抑制剂等多种手段,阐明PKM2构象变化在KCs极化中的作用和分子机制,为临床治疗脓毒症做些探索性工作。
背景:内毒素休克是重症感染者常见并发症,且死亡率高居不下。内毒素耐受(endotoxin tolerance, ET)是机体抵抗内毒素休克主要的内源性保护机制之一。研究内毒素信号传导和内毒素耐受的作用机制对阐明内毒素休克时内源性保护效应具有重要意义。库否细胞(kupffer cells, KCs)是定置于肝血窦的巨噬细胞,约占全身单核细胞总数的80%,以KCs为研究对象具有一定的临床意义。丙酮酸激酶(pyruvate kinase, PK)是糖酵解途径最后一个限速酶,PKM2是其中之一。正常细胞中PKM2主要以四聚体形式存在,催化磷酸烯醇式丙酮酸产生丙酮酸和ATP,促进氧化磷酸化供能。肿瘤细胞以及LPS活化的巨噬细胞中,PKM2以单/二聚体形式存在,以蛋白激酶的功能在细胞核调控基因转录,抑制氧化磷酸化,促进糖酵解。活化因子(DASA-58,TEPP-46)介导的PKM2单/二聚体向四聚体的转化,在启动细胞代谢重编程,调节细胞能量代谢方面起重要作用。线粒体是细胞能量代谢的主要场所,线粒体功能的改变直接影响细胞乃至机体的能量代谢。.内容:通过构建原代细胞(Kupffer细胞和腹腔巨噬细胞)以及原代细胞RAW264.7细胞内毒素耐受和非耐受模型;构建C57小鼠耐受和非耐受模型,探讨了活化因子TEPP-46对内毒素耐受形成的影响及分子机制。.重要结果:TEPP-46可以诱导PKM2四聚体的形成;通过抑制PI3K/Akt信号通路,促进PGC-1a的表达,进而促进线粒体生物合成,通过抑制炎症因子的分泌,诱导小鼠以及巨噬细胞内毒素耐受。.科学意义:本研究深入探讨内毒素耐受的分子机制,对阐明内毒素休克时内源性保护机制具有重要意义,也为临床研发抗内毒素血症药物提供理论依据。
{{i.achievement_title}}
数据更新时间:2023-05-31
Efficient photocatalytic degradation of organic dyes and reaction mechanism with Ag2CO3/Bi2O2CO3 photocatalyst under visible light irradiation
祁连山天涝池流域不同植被群落枯落物持水能力及时间动态变化
DeoR家族转录因子PsrB调控黏质沙雷氏菌合成灵菌红素
Intensive photocatalytic activity enhancement of Bi5O7I via coupling with band structure and content adjustable BiOBrxI1-x
Empagliflozin, a sodium glucose cotransporter-2 inhibitor, ameliorates peritoneal fibrosis via suppressing TGF-β/Smad signaling
M2型丙酮酸激酶PKM2琥珀酰化修饰调控肝癌细胞能量代谢和增殖的机制研究
肿瘤代谢紊乱的蛋白质组学研究以及肿瘤M2型丙酮酸激酶(PKM2)调控肿瘤代谢的分子机制
PI3Kγ通过PKM2调节Kupffer细胞M2极化在肝移植急性排斥反应中的作用及机制研究
PKM2介导糖代谢重编程诱导巨噬细胞M1极化参与肺癌放射性肺炎发生及关键机制