Development of biomass pyrolysis technology is benefit to reduce the our petroleum dependence degree, as well as the environment protecting. However, the bio-oil obtained from high nitrogen content biomass like cyanobacteria has relatively lower quality because of its high nitrogen content. Catalytic pyrolysis with proper catalyst, which combined the pyrolysis of biomass and catalytic reforming of its products, could decrease the nitrogen content of bio-oil and upgrading its quality. This project will prepared a new bifunctional catalyst with both acid and alkali active centers by the method of introducing basic centers that obtained from metal salts or layered double metal hydroxides as precursors into the modified zeolites with rich pore structure and acidic centers. Apply this catalyst into the catalytic pyrolysis system which uses cyanobacteria as raw material. From the results of characterization and catalytic activity test, the relationship between the preparing parameters, catalysts properties and catalytic activity will be discussed, and then a catalytic pyrolysis mechanism will be speculated. After the research of operating parameters of the catalytic pyrolysis, a appropriate kinetic model will be established. With this project, the synergetic catalysis of acidic and basic center in high nitrogen content biomass catalytic pyrolysis will be eventually revealed, and a biomass catalytic pyrolysis kinetic model would be built. These research achievements will established the foundation for the further study of producing high quality bio-oil from biomass catalytic pyrolysis and exploring its process theoretical models.
生物质热裂解技术的开发对于降低我国的石油依存度,保护环境都具有积极意义。高氮生物质热裂解所得生物油的氮含量高,品质差。在热裂解过程中添加适当的催化剂,将热裂解过程与产物的催化重整过程耦合,可降低生物油的氮含量,提升其品质。本项目分别以金属盐和层状金属氢氧化物为前驱体,在具有丰富孔结构和酸性中心的改性分子筛表面引入碱性中心,制备同时有酸性和碱性活性中心的双功能催化剂。将其应用于以水华蓝藻为原料的高氮生物质催化热裂解系统,关联不同催化剂的各项表征结果及催化性能,研究制备参数与其物化性质及催化活性之间的关系,探索催化热裂解机理。通过对催化热裂解过程参数的研究,建立相应的催化热裂解动力学模型。通过本项目的研究,最终揭示催化剂酸碱中心在高氮生物质催化热裂解过程中的协同催化作用,构建生物质催化热裂解动力学模型,为进一步开发制备高品质生物油的生物质催化热裂解工艺以及相关的过程理论模型奠定基础。
水华蓝藻作为湖泊治理的主要污染物之一,其再利用有着积极的意义。本项目采用水华蓝藻作为高含氮生物质的代表,热裂解为主要转化手段,通过制备出的酸碱双功能催化剂,同时对热裂解工艺条件进行优化,在成功提高了蓝藻热裂解生物油的产率,同时提高其热值与品质。同时,本项目的研究中还发现,通过改变热裂解过程中蓝藻所处的气体氛围和催化剂,可以对生物油的成分进行调控,从而有目的的提高某一类或某一种成分的含量。项目研究期间共发表SCI论文28篇,参加国内外学术会议3人次,申请发明专利3项,培养博士研究人3名,硕士研究生4名。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
桂林岩溶石山青冈群落植物功能性状的种间和种内变异研究
双功能钙基催化剂的制备及其催化裂解生物质焦油制氢机理研究
沸石酸碱双功能催化剂的研究
酸碱双功能催化剂及其在制备α,β不饱和酯反应中的协同效应
重质油裂解-气化双功能催化剂制备与反应机理研究