Over the years, our research group has been devoted to the study of some microfluidic technologies such as nucleic acid amplification, chemiluminescence/electrochemiluminescence detection, as well as chip materials and fabrication. This project is based on the previous basic research results, and low-cost cloth substrate materials and easy-to-operate micromachining technologies are used to fabricate cloth-based microfluidic chips that are organically coupled with chemiluminescence to prepare a novel gene sensor. In this study, some basic, prospective problems can be studied and resolved: (1) the biotinylated, single-stranded DNA target samples, which are used for chemiluminescence detection, are prepared by using different approaches (polymerase chain reaction and isothermal nucleic acid amplification); (2) the cloth-based microfluidic chips are fabricated by wax-screen printing and UV lithography technologies; (3) the cloth-based microfluidic chips that can bind with DNA targets, are prepared; (4) the structural design of the reaction chamber/fluidic channel in the cloth-based microfluidic chip can be optimized for chemiluminescence detection of DNA targets; (5) considering the food pathogenic bacteria as the object of study, the developed cloth-based microfluidic chemiluminescence gene sensor is used for rapid, sensitive and specific detection of the DNA targets; (6) different detectors used for chemiluminescence detection can be studied and evaluated. Ultimately, this project can provide the microfluidic biosensing method and technology of the frontier of innovation for a breakthrough solution to the problems and bottlenecks encountered in nucleic acid amplification and chemiluminescence detection.
本课题组多年来一直致力于研究微流控核酸扩增、化学发光/电致化学发光微流控检测以及芯片材料与加工等技术。本项目将在课题组先行成果的基础上,采用廉价的布材料和简单易行的微加工技术加工布基微流控芯片,布基芯片与化学发光耦合以构建一种新型布基微流控化学发光基因传感器,从而对其一些基础问题展开前瞻性研究,其内容主要包括:(1)研究用于化学发光检测的,基于聚合酶链式反应、等温核酸扩增的生物素化单链DNA制备方法;(2)研究布基微流控芯片的紫外光刻、蜡网印加工方法;(3)研究特异结合靶DNA的布基微流控传感芯片制备方法;(4)布基化学发光反应池/微流体通道设计与优化;(5)以常见食品致病菌为研究对象,采用布基微流控化学发光基因传感器进行快速、灵敏、特异的DNA检测;(6)化学发光检测器优化选择。本项目最终建成微流控生物传感新方法与技术能突破性解决现有核酸扩增、化学发光检测各自所遇到的一些难题和瓶颈。
本项目针对传统微流控化学发光(CL)在生物传感应用上的不足而进行一些基础问题研究,已取得一些阶段性进展:(1)首次报道一种布基微流控(即布芯片)重力/毛细流动CL(GCF-CL)技术及其相关传感应用。该GCF-CL技术可用于检测三价铬(Cr(III))(线性动态范围(LDR):0.01-100 mg/L;检测极限(LOD):6.2 µg/L)、过氧化氢(LDR:0.01-10 mM;LOD:9.07 μM)和葡萄糖(LDR:0.01-10 mM;LOD:9.74 μM)。此外,布芯片上集蜡微阀的GCF-CL实现集成化的葡萄糖(LDR:0.1-100 mM;LOD:0.0948 mM)甚至DNA检测。(2)发展了布芯片CL与三电极电化学耦合的传感技术(即布芯片电化学发光(ECL)传感技术),包括布芯片ECL用于乳酸盐检测(LDR:0.05-2.5 mM;LOD:0.035 mM)以及布芯片邻近杂交-ECL(PH-ECL)用于检测特征DNA片段(LDR:0.001-2500 pM;LOD:0.13 fM)。(3)首次报道一种超柔性的布芯片CL与闭合式双极电化学耦合的传感技术(即布芯片闭合式双极电化学发光(CBP-ECL)传感技术)。此外,双性电极(BPE)阴极上纳米材料修饰被表明有潜力极大地增强其阳极上CBP-ECL发光强度。目前,电极未修饰的布芯片CBP-ECL已经能定量检测三丙胺(LDR:0-2.5 mM;LOD:0.085 mM)、过氧化氢(LDR:0.025-2.5 mM;LOD:0.024 mM)和葡萄糖(LDR:0.25-5 mM;LOD:0.195 mM),而BPE阴极上修改多壁碳纳米管和石墨烯量子点-金纳米颗粒复合物的CBP-ECL能高灵敏检测葡萄糖(LDR:0.1–5000 μM;LOD:64 nM)。(4)首次报道一种布芯片CL与开放式双极电化学耦合的传感技术(即布芯片开放式双极电化学发光(OBP-ECL)传感技术)。所开发的布芯片OBP-ECL能定量检测过氧化氢(LDR:0.025-10 mM;LOD:0.024 mM)和葡萄糖(LDR:0.025-10 mM;LOD:0.023 mM)。(5)其他衬底材料(纸、线)也被很好地用来构建微流控传感器。总之,在本项目资助下,通过一些关联性的创新研究,已初步建成布基微流控CL技术及其传感应用的技术平台。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
基于分形L系统的水稻根系建模方法研究
路基土水分传感器室内标定方法与影响因素分析
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
电化学发光生物传感器一些基础问题的研究
纸基微流控电致化学发光集成系统及其环境激素检测研究
用于肝癌早期诊断的多通道纸基微流控生物传感器的研究
微流控芯片纳米催化化学发光检测及用于单细胞分析的研究