The fluorine-containing compounds have found extensive applications in pharmaceuticals, agrochemicals, and materials. But with the development of fluorine chemistry and fluorine industry, more and more fluorinated compounds have been discharged in our daily life and contaminated our environment. The stability of the carbon-fluorine bond and the chemical resistance of organofluorine compounds make them difficult to decompose and reuse. How to treat these ubiquitous environmental fluorine-containing industrial pollutants is not only a great challenge for the chemist but also for the environmentalist. In this project, we focuses on the activation of carbon-fluorine bonds and makes further efforts on the study of the different hydrogen source / metal salt catalysts systems on the hydrodefluorination of various types of carbon-fluorine bonds based on our previous studies. At the same time, we carry out the more significant and difficult studies on the functionalization of carbon-fluorine bonds in polyfluoroarenes, for example, coupling reaction based on the carbon-fluorine bonds. We try to use the common and cheaper metal salts and their complexes such as nickel, iron, and zinc salts etal. or solid superacid as catalysts to cleave the carbon-fluorine bonds, avoiding using the relatively expensive and complex transition metals. The novel high efficient and economical metal catalytic systems will be obtained via the selectivity of suitable solvents, additives and catalysts and finally we apply these new catalytic systems to hydrodefluorinated and functionalizated of various carbon-fluorine bonds in polyfluoroarenes. The key issues of the activation and essentials of carbon-fluorine bond were further investigated through the probe the mechanism of the reaction. The theory, method and application of the activation of carbon-fluorine bond were promoted by the implement this project.
含氟化合物在医药、农药、材料等领域有着广泛应用,但随着含氟有机化合物的大量使用,它们对环境污染问题日显突出。含氟化合物具有超强稳定性而难以分解和再利用,如何处理氟污染、氟废料是人们所亟需解决的问题。本项目以当前研究热点碳氟键活化为研究对象,以我们前期开展的碳氟键的碳氢化工作为基础,进一步深入研究不同氢源/金属盐催化剂体系对不同类型的碳氟键的脱氟加氢,并开展意义和难度更大的在不同催化剂存在下的多氟芳烃的碳氟键的官能团化(如基于碳氟键的偶联反应等)。催化剂拟使用普通的金属盐或其配合物(如铁、锌、镍盐等)以及固体超强酸来断裂碳氟键,避免使用昂贵的金属盐及其复杂的络合物,并通过选择合适的溶剂和助剂,构成高效、廉价、新型的金属盐催化剂体系,将不同类型的碳氟键活化并碳氢化或官能团化。同时,通过对机理的研究,进一步探讨碳氟键的本质及其活化的关键问题。通过本项目的实施,推动碳氟键活化理论和方法研究及应用。
本项目以当前研究热点碳氟键活化为研究对象,开展了碳氟键的脱氟加氢反应的研究和多氟芳烃以及偕二氟烯烃的碳氟键在不同反应条件下的各种官能团化反应的研究(如基于碳氟键的偶联反应等)。取得主要研究成果包括以下几个方面:(1) 氟苯和偕二氟烯烃的碳氟键的脱氟加氢反应。(2) 芳基氟的碳氟键的官能团化:a) 无催化剂存在下吡啶诱导的碳氟键与格氏试剂的烷基化和芳基化反应;b) 取代氟苯与末端炔的Sonogashira型交叉偶联反应;c) 室温下二异丙基氨基锂(LDA)促进的含氟芳烃与二芳基甲烷的反应;d) 在二异丙基氨基锂(LDA)存在下室温下含氟芳烃与芳基乙腈的反应。(3) 偕二氟烯烃的碳氟键的官能团化反应: a) 由二氟烯烃与含氮杂环反应合成N- (α-氟代乙烯基)氮杂环化合物的反应; b) 钯催化或镍催化的偕二氟烯烃或单氟烯烃与格氏试剂的Kumada交叉偶联反应;c) 由偕二氟烯烃与苯硼酸进行交叉偶联反应合成(Z)-单氟烯烃;d) 镍催化下Kumada类型的偕二氟烯烃与双格氏试剂的成环反应;e) 铜催化的偕二氟烯烃与活泼亚甲基的合成多取代呋喃;f) 以苯基乙腈为氰基化试剂将偕二氟烯烃氰基化反应;g) 偕二氟烯烃与大位阻格氏试剂的立体选择性反应。(4) 三氟甲基化和三氟甲硫基化反应:a) 含吸电子基团的乙酰氨基苯和氨基苯的三氟甲基化的反应研究;b) 末端炔的三氟甲硫基化反应合成含三氟甲硫基烯烃;c) 乙酰氯促进的酮-氢的三氟甲硫基化反应。通过对这些新反应的研究,进一步理解了碳氟键的本质及其活化的关键问题;推动了碳氟键活化理论和方法研究及应用。.项目实施期间,以项目负责人为通讯作者共发表相关SCI论文28篇。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
中国参与全球价值链的环境效应分析
基于多模态信息特征融合的犯罪预测算法研究
疏勒河源高寒草甸土壤微生物生物量碳氮变化特征
面向云工作流安全的任务调度方法
过渡金属催化的碳氟键的形成与断裂研究
基于碳氟键官能团化的多氟苯并碳(杂)环骨架的高效构建研究
基于协同活化策略的过渡金属催化选择性惰性碳氟键烷基化反应研究
过渡金属催化的碳-碳键活化反应研究