Up to now, the shifting smoothness of electrified gear transimission system can not be solved because rigidity mathmatic models are often assumed when its control stratege is researched, while the non-linear vibration characteristics is very important, but negelected. . Under the preliminary develoment of the prototype and its control stategy for electrified gear transimission system integrating permanent magnet motor and 2-shifts Automatic Mechanical Transimission (AMT) without cluth and synchronizer, the non-linear vibration characteristics and shifting smoothness control strategy of the system are mainly researched in this proposal. . Firstly, the non-linear characteristics of multi-gear meshing transimission system is researched. The influences of time-varying parameters on the system’s non-linear response behaviors are analysed in order to set up the dynamic vibration models under the working condition of multi-gear meshness and multi-bearing supporting. . Then, the non-linear vibration characteristics during shifting process are studied. The vibration models and the parameters transition matrix are built among different shifting stages, which provides the basement for model solution and dynamic simulation later. . Further, the shifting control strategy is discussed under the non-linear behaviors of the gear transimission system. The parameter’s sensitivity on shifting smoothness is established. Under multiple excition, the optimized control strategy for the outstanding shifting smoothness is put forward. The working stability and shifting quality are evaluated.. This research will afford to reveal the non-linear vibration mechanism of multi-gear meshness and shifting working condition for electrcified gear transimission system, and improve implementation approaches for control strategies of the system's dynamic performance.. Research conclusions will be verified by theoretical analysis, model simulation, and bench testing.
针对现阶段电动汽车电传动齿轮换挡控制基于刚性传动模型,忽视系统非线性振动特性,导致换挡平顺性差的问题,申请人拟在前期无离合器无同步器永磁同步电机+2档自动变速器构成的电传动样机开发和控制策略研究基础上,开展齿轮系统多自由度非线性振动机理及换挡平顺性控制研究。包括:研究多齿轮副传动系统非线性振动特性,分析多项时变参数对系统非线性振动特性的影响,建立多齿轮副和多轴承支撑条件下的振动模型;研究换挡过程的非线性振动特性,分析换挡过程各阶段的振动模型及状态转移条件,进行振动模型的求解和动力学仿真;研究换挡平顺性控制策略,进行平顺性影响参数的灵敏度分析,建立多重耦合激励下基于平顺性最佳的控制方法,分析工作稳定性和换挡品质。本项目研究有利于揭示多齿轮副及换挡条件下齿轮系统的非线性振动及耦合机理,为电传动控制及应用奠定科学理论基础。本项目采用理论分析、模型仿真与台架验证相结合的方法开展研究。
现阶段电动汽车电传动齿轮换挡控制研究主要基于刚性传动模型,忽视了传动系统的非线性振动特性,导致换挡平顺性差。为此,该项目在前期无离合器无同步器永磁同步电机+2挡自动变速器构成的电传动样机开发和控制策略研究基础上,开展了齿轮系统多自由度非线性振动机理及换挡平顺性控制研究。主要研究内容包括:新型电传动系统结构及控制机理,研究多齿轮副传动系统非线性振动特性,分析多时变参数对系统非线性振动特性的影响,建立多齿轮副和多轴承支撑条件下的振动模型;研究换挡过程的非线性振动特性,分析换挡过程各阶段的振动模型及状态转移条件,进行振动模型的求解和动力学仿真;研究换挡平顺性控制策略,进行平顺性影响参数的灵敏度分析,建立多重耦合激励下基于平顺性最佳的控制方法,分析工作稳定性和换挡品质;建模仿真和试验技术研究,除此之外,也对电传动系统中的电池充放电特性,以及电机控制及温度场特性进行了研究。通过仿真揭示多齿轮副及换挡条件下齿轮系统的非线性振动及耦合机理,通过台架试验验证分析结果的正确性,并寻找技术实践中的更多影响因素及控制方法。. 本项目研究获得了车辆电传动齿轮系统的非线性振动数理模型和有限元模型,获得了多激励时变参数条件下的非线性响应特性,实现了动力学特性和运动学特性的分析,揭示了多齿轮副及换挡条件下齿轮系统的非线性振动及耦合机理,阐明了系统所具有的非线性振动耦合特性对电传动系统换挡平顺性及工作稳定性的重大影响,提出了换挡平顺性评价及控制算法,并进行了试验验证。. 本项目为电传动控制应用、以及电传动系统的故障诊断分析奠定了科学理论基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
监管的非对称性、盈余管理模式选择与证监会执法效率?
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
针灸治疗胃食管反流病的研究进展
卫生系统韧性研究概况及其展望
齿轮传动耦合非线性振动冲击噪声的识别与控制
定日镜齿轮系统精密传动特性及传动精度控制
电机与AMT集成的汽车机电复合传动系统平顺换档机理及控制
车辆传动换挡过程非线性动力学建模与求解