A.Bressan的波跟踪法(Front tracking method)与Glimm格式虽然在本质上是等价的,但在波跟踪法证明过程中引入了一个与L^1距离等价的Lyapunov型泛函,这使得我们最后能够建立一个Lipschitz半群,它产生一个弱熵解,且该弱熵解在L^1范数下连续依赖于初值和时间。其中半群的出现可看作对L^1距离的一种关于时间的"导数",因此,这种思想有助于解决与时间相关的L^1估计。同样的思想可用于其它近似方程组的解之间L^1误差的估计。本项目拟对一些具体而重要的方程组(如Mach数接近0时的非等熵可压缩流体力学方程组)与其近似方程(相应地,不可压方程)解之间给出L^1距离下关于时间的误差估计,另外将采用类似思想对双曲守恒律方程组的简单的初-边值问题进行L^1稳定性估计,并试图从泛函的角度分析这种思想的抽象框架,以期发挥其最大的作用。
{{i.achievement_title}}
数据更新时间:2023-05-31
肥胖型少弱精子症的发病机制及中医调体防治
针对弱边缘信息的左心室图像分割算法
基于旋量理论的数控机床几何误差分离与补偿方法研究
信息熵-保真度联合度量函数的单幅图像去雾方法
汽车侧倾运动安全主动悬架LQG控制器设计方法
双曲守恒律高精度熵稳定算法研究
双曲守恒律方程组弱解的性质研究
二类二维双曲守恒律方程组Riemann解的研究
激波与双曲守恒律系统的整体解