Electrochemical reduction of CO2 to value-added chemicals and fuels using renewable electricity is a promising strategy to mitigate CO2 emission and close the anthropogenic carbon cycle. For this process, the development of low-cost, efficient and selective electrocatalysts is the key to achieve the desired transformation reactions. Since biomolecules inherently possess diversified structures and rich heteroatom-containing functional groups, they may serve as good natural ligands to function as the needed framework for synthesizing advanced electrocatalysts. In this project, we propose to utilize folic acid as a natural bioligand to rationally design advanced and cost-effective CO2 reduction catalysts which comprise transitional metal and N in-situ co-doped into multidimensional carbon nanomaterials (e.g., carbon nanotubes, graphene and porous carbon). Folic acid-transition metal complex precursors will be firstly constructed with well-controlled morphology and composition. In-situ nanoarchitecturing and active-site engineering on catalysts will be conducted to promote CO2 reduction and simultaneously suppress the competitive hydrogen evolution reaction (HER). This project will comprehensively study the effect of the morphology, composition and structure of the catalysts on their catalytic activity and selectivity. In combination with experimental characterization and density functional theory (DFT) calculations, the CO2 reduction mechanisms on the active sites of catalysts will be investigated in detail. This project will provide solid theoretical and experimental support for future studies.
CO2电化学还原为高值化学品是实现其资源化利用和碳循环的有效途径,而低成本、高效和高选择性催化剂是实现该过程的关键。生物分子具有丰富的结构和多种含杂原子官能团,可以作为良好的天然配体用于构建先进催化剂。本项目拟利用叶酸-过渡金属离子之间的配位化学,可控构建金属和N原子共掺杂的多元维度碳纳米材料催化剂(包括碳纳米管、石墨烯和多孔碳);通过原位纳米结构调控和活性位点工程,实现高效、高选择性电催化CO2还原并有效抑制竞争性氢气析出反应(HER)。本项目将深入探究金属和N共掺杂碳材料的形貌、组成和表界面结构对催化剂活性和选择性的影响及调控方法,揭示催化活性中心促进CO2还原并抑制HER的作用机理,阐明还原产物的反应路径和决速步骤,探索提高CO2电催化转化效率的新途径。
发展低成本、高效和高选择性催化剂是实现新能源转换的关键。生物分子具有丰富的结构和多种含杂原子官能团,可以作为良好的天然配体用于构建先进催化剂。本项目利用叶酸-过渡金属离子之间的配位化学,可控构建了金属和N原子共掺杂的多元维度碳纳米材料催化剂(包括碳纳米管、石墨烯和多孔碳);通过原位纳米结构调控和活性位点工程,实现了高效、高选择性电催化CO2还原、O2还原、N2还原和S-多硫化物的转化。本项目深入探究了金属和N共掺杂碳材料的形貌、组成和表界面结构对催化剂活性和选择性的影响及调控方法,揭示了催化活性中心促进小分子还原的作用机理,阐明了最优反应路径和决速步骤,为高效催化剂的产业化应用奠定基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
祁连山天涝池流域不同植被群落枯落物持水能力及时间动态变化
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
物联网中区块链技术的应用与挑战
当归红芪超滤物对阿霉素致心力衰竭大鼠炎症因子及PI3K、Akt蛋白的影响
煤/生物质流态化富氧燃烧的CO_2富集特性
煤基氮掺杂多孔碳的制备及氧还原电催化性能研究
氮碳共配位金属活性位点的可控制备及其电催化二氧化碳还原研究
生物质基二维氮掺杂碳材料的同步构筑及其氧还原电催化特性研究
过渡金属单原子负载氮掺杂多孔碳材料的结构设计及电催化还原CO2性能研究