The space-time adaptive array anti-jam technology using the antenna array as a physical carrier has become the main target of development in the next period of time in GNSS receiver anti-jam technology. Although the viability of the receiver under interference environment has been improved, the receiver generates an additional error existing some key scientific issues to be resolved. On the one hand, the effect on GNSS signals caused by the structure of space-time model and adaptive interference suppression algorithms, the corresponding error correction, compensation mechanisms and other infrastructure problems still lack of systematic research and analysis. The space-time adaptive array processing technology and it’s effect on the base-band signal processing when employing BOC modulation has yet to be in-depth analysis and research. This project focus on the key scientific problems in precise positioning faced by the adaptive array anti-jam receiver. From the carrier to noise ratio model and error compensation of the space-time anti-jam algorithm, the space-time anti-jam algorithm and tracking loop design of the BOC modulation, antenna array phase correction and other aspects, the researches of basic theory and innovation are carried out and array receiver experimental platform is built to test verification, which has scientific significance. What’s more, researches on this project for improving precise navigation and guidance capability of the defense weaponry under the strong interference environment has important strategic significance and broad application prospects.
以天线阵为物理载体的空时自适应阵列抗干扰技术已成为今后一段时期内GNSS接收机抗干扰技术的主要发展对象。但阵列抗干扰在提高干扰环境下接收机生存能力的同时,也给接收机带来了额外的误差,存在一些关键科学问题有待解决。一方面,空时结构模型和自适应干扰抑制算法对GNSS信号造成的影响以及对应的误差校正、补偿机制等基础问题还缺乏系统的研究与分析;另一方面,针对BOC调制体制的空时自适应阵列处理方法及其对基带信号处理的影响还有待深入的剖析与研究。本项目围绕自适应阵列抗干扰接收机精确定位所面临的关键科学难题,从空时抗干扰算法的载噪比框架模型与误差补偿、BOC调制下的空时抗干扰算法与跟踪环路设计、阵列天线相位校正等方面开展基础理论研究与创新,并构建阵列接收机试验平台进行试验验证,具有显著的科学意义;同时本项目的研究对于提高国防武器装备强干扰环境下的精确导航与制导能力具有重要的战略意义与广阔的应用前景。
作为当前GNSS接收机抗干扰领域最前沿的尖端技术,空时抗干扰已成为今后一段时期内军民领域GNSS接收机抗干扰技术的主要发展对象。本项目以面向GNSS精确定位应用的自适应阵列抗干扰技术为目标,通过对空时自适应最优滤波准则及误差补偿方法、空时自适应阵列抗干扰下BOC调制信号无模糊零偏差跟踪方法、BOC调制信号下宽带信号的空时抗干扰方法、以及阵列天线在线自校正方法开展基础与创新。项目首先设计了无偏差BOC信号空时最优滤波准则,实现阵列天线对BOC信号的无失真处理。然后本项目提出了一种基于S曲线赋形的BOC信号无模糊跟踪方法,解决阵列抗干扰接收机信号精确跟踪问题。其次,分别从时域结构和空域结构出发,提出了两种通用的稳健宽带自适应波束形成算法。最后,提出一种适用于BOC调制信号的空时抗干扰算法,实现BOC调制信号的干扰抑制和偏差消除。本项目的研究将会有力地推动北斗导航接收机在抗干扰和精确定位等方面的理论研究与应用,对于提高我军导弹、无人机、战斗攻击机等武器装备强干扰环境下的精确导航与制导能力具有重要的战略意义和广阔的应用前景。
{{i.achievement_title}}
数据更新时间:2023-05-31
低轨卫星通信信道分配策略
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
当归补血汤促进异体移植的肌卫星细胞存活
精子相关抗原 6 基因以非 P53 依赖方式促进 TRAIL 诱导的骨髓增生异常综合征 细胞凋亡
BDS-2/BDS-3实时卫星钟差的性能分析
阵列盲信息处理通信自适应抗干扰方法研究
面向复杂海况和北斗卫星接收机的极化敏感阵列自适应信号处理算法研究
粒子滤波在阵列天线GNSS接收机中的应用研究
面向新型信号体制的GNSS接收机基带关键技术研究