自1965年,相对同调代数,特别是Gorenstein同调代数理论已发展到一个先进的水平。但导出范畴在Gorenstein同调代数中还没有对应物。本项目将建立Gorenstein导出范畴;研究它与导出范畴之间的关系;研究Gorenstein环和有限维代数的有界Gorenstein导出范畴及其应用;研究Gorenstein导出范畴的t-structure,并利用它来研究有界Gorenstein导出范畴的Krull-Schmidt性。过去四十年,代数表示论系统的发展出构造结构和表示的方法。本项目将利用代数表示论方法构造Gorenstein投射模,丰富Gorenstein投射模的例子。本项目的研究成果将使得Gorenstein同调代数在三角范畴的层次上得以深入发展和应用。
{{i.achievement_title}}
数据更新时间:2023-05-31
Influence of calcination temperature on the photocatalytic performance of the hierarchical TiO2 pinecone-like structure decorated with CdS nanoparticles
Direct-writing Structure Color Patterns on the Electrospun Colloidal Fibers toward Wearable Materials
Parametric sensitivity study on regional seismic damage prediction of reinforced masonry buildings based on time-history analysis
Influence of Forging Temperature on the Microstructures and Mechanical Properties of a Multi-Directionally Forged Al-Cu-Li Alloy
Nanotextured silk fibroin/hydroxyapatite biomimetic bilayer tough structure regulated osteogenic/chondrogenic differentiation of mesenchymal stem cells for osteochondral repair
Recollements和Gorenstein导出范畴
三角范畴、模型范畴与Gorenstein投射模
导出范畴中复形的Gorenstein同调理论
Gorenstein投射模与virtually Gorenstein代数