在随机理论中常将周围介质分子对系统的无规碰撞常简化为某种形式的噪声。噪声谐振子方程中的位移项和速度项分别对应简谐噪声和简谐速度噪声,这两种噪声的频谱关系都存在一个非单调的变化,我们定义为有结构的噪声。本研究的主要内容即把有结构的噪声应用到各种随机系统中,利用它的频率特性来研究它对各种宏观系统的影响。这种频率结构与外部信号或势函数的频率相互作用,将会带来丰富的动力学效应,导致粒子定向流的增大或随机共
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
拥堵路网交通流均衡分配模型
卫生系统韧性研究概况及其展望
面向云工作流安全的任务调度方法
天津市农民工职业性肌肉骨骼疾患的患病及影响因素分析
多种随机噪声诱导的随机镇定及其在多自主体系统中的应用
开放量子系统中的随机调控和噪声模拟
时变系数随机乘积噪声系统的算子谱及其在分析与控制中的应用
脉冲随机微分系统的噪声镇定和噪声消稳研究