Removal of nitrogen and phosphorus is key for controlling eutrophication. The novel system integrating anaerobic/anoxic/oxic (A2/O)-biological aerated filter (BAF) system for deeply biological removal of nitrogen and phosphorus, which could solve the sludge retention time (SRT) conflicting problem between nitrifiers and polyphosphate accumulating organisms(PAOs). The early studies on this system focused on the individual process conditions, and concerned about the apparent treatment efficiency. While the optimal operation and enrichment of community of functional microorganism are not still reported..The main contents of this study include: (1) Optimal operation of A2/O-BAF system, (2) Enrichment of community of functional microorganism (3) The relationship between the performance and community of functional microorganism, (4) The succession of community of functional microorganism..The feature and innovation of this study are: (1) Optimization operation of A2/O-BAF system for deeep removal of nitrogen and phosphorus; (2) Optimal operation by raw water quality for enrichment of ordinary heterotrophic organisms (OHOs), nitrifiers, denitrifier and PAOs, and control of filamentous, and washing out glycogen accumulation organisms (GAOs). This project aims to explore the optimization operation strategy of A2/O-BAF system for deeply biological removal of nitrogen and phosphorus, and reveals the relationship between the biological treatment performance , and analyzes the problem of biological wastewater treatment.
脱除氮磷是根治水体富营养化的关键,A2/O-BAF作为新近研发的双污泥深度脱氮除磷系统,在时间和空间上解决了聚磷菌和硝化菌之间泥龄不一的固有矛盾。对该系统前期的研究多集中在个别工艺条件的调控上,更关注表观的处理效果,而对系统优化运行及功能微生物种群富集的研究很鲜见。.本项目的主要研究内容:(1)A2/O-BAF系统的优化运行;(2)功能微生物种群的富集;(3)系统处理效能及功能微生物种群结构之间的关系;(4)功能微生物种群的演替规律。.本项目的特色和创新之处在于:(1)构建A2/O-BAF深度脱氮除磷系统的优化运行模式;(2)通过原水水质变化和系统优化运行,实现异养菌、硝化菌、反硝化菌和聚磷菌等功能微生物种群的优势生长,控制丝状菌,淘洗和淘汰聚糖菌。本项目旨在探索A2/O-BAF深度脱氮除磷系统优化运行策略,揭示生物处理效能与功能微生物种群之间的关系,解析污水生物处理的本质问题。
我国市政污水C/N比低,碳源缺乏,使得污水厂氮磷不能同时达标。A2/O是城市污水厂的主体工艺,由于回流污泥携带硝态氮,抑制厌氧释磷,使得除磷效果不佳;同时,长泥龄的硝化菌和短泥龄的聚磷菌混合生长,导致脱氮除磷很难同步。A2/O-BAF系统把聚磷菌与硝化菌分开,在A2/O中进行反硝化除磷,而在BAF中实现硝化,从而完成同步脱氮除磷。本项目重点进行了以下研究:.(1)研究了两段进水对反硝化除磷脱氮的影响,结果表明:当分段进水比为7:3时,平均进水COD、NH4+-N、TN、TP 浓度分别为174.99、58.19、59.10、5.15mg/L,出水COD、NH4+ -N、TN、TP 浓度分别为29.48、4.07、14.10、0.44mg/L,去除率分别为 82.12%、92.76%、75.45%、91.20%;系统中反硝化聚磷菌占聚磷菌的比例(DPAOs/PAOs)为98.81%。.(2)在低温11~14℃下,研究了污染物去除特性、反硝化除磷过程中除磷脱氮比例(△PO43-/△NO3--N)。结果表明,在COD、NH4+-N、TN和△PO43-的平均进水浓度分别为193.1、58.6、60.3和5.1mg/L时,平均出水浓度分别为46.3、2.5、13.4和0.3mg/L,达到城镇污水处理厂一级A标准。对△PO43-/△NO3--N进行线性拟合,比值分布在0.47~1.75之间;对△PO43-/△NO3--N进行数理统计,其均值为1.20,标准差为0.29。.(3)当进水COD、NH4+-N和TP分别为189.6、60.4和5.1mg/L,调控HRT分别为9、8、7和6h时,COD出水平均浓度均小于42mg/L,NH4+-N出水平均浓度分别为2.4、2.8、3.3和6.5mg/L,TP出水平均浓度分别为0.3、0.4、0.7和0.8mg/L;系统缺氧段DPAOs/PAOs从76.8%递减到48.8%,HRT为8h时,通过数理统计方法得出反硝化除磷脱氮比(△PO43-/△NO3--N)的概率密度高达37.5%,缺氧段△PO43-/△NO3--N为1.24(理论值1.41)。
{{i.achievement_title}}
数据更新时间:2023-05-31
Efficient photocatalytic degradation of organic dyes and reaction mechanism with Ag2CO3/Bi2O2CO3 photocatalyst under visible light irradiation
基于分形L系统的水稻根系建模方法研究
Intensive photocatalytic activity enhancement of Bi5O7I via coupling with band structure and content adjustable BiOBrxI1-x
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
特斯拉涡轮机运行性能研究综述
复合铁酶促活性污泥深度生物脱氮除磷反应机制研究
生物脱氮除磷系统生态结构对污泥膨胀的作用及控制研究
“曝气-沉淀-A2/O”工艺同步污泥减量与脱氮除磷性能及机理研究
嵌入微生物燃料电池强化A2/O工艺生物脱氮除磷效率的机理研究