Dairy products are important dietary sources of nutrients, such as protein, calcium and vitamins. These foodstuffs also contain lactose, the carbohydrate of dairy, which is not absorbed in its intact form, its hydrolysis into glucose and galactose by way of the action of the lactase (β-galactosidase) being necessary. The level of lactase activity is elevated until the weaning stage and declines with advancing age, a phenomenon called lactase deficiency (LD). LD can produce lactose malabsorption and intolerance, which is characterized by symptoms such as diarrhea, abdominal distension, flatulence, cramps, and abdominal pain after the intake of dairy products. Therefore, LD can induce the malabsorption of dairy nutrients. LD is very popular in the world, especially in our country. There are several ways have been found to manage LD. In this work, we present a new method to solve LD: display lactase on the cell-surface of Lactococcus lactis (L. lactis), which can hydrolyze lactose in vivo and in vitro. β-galactosidase of Lactobacillus acidophilus is monomeric enzyme with moderate molecular mass (76.6 kDa). The N-terminal of the enzyme will be fused with promoter, secretion signal and anchoring motifs, which construction a cell-surface display system. By using the system, the expressed fusion protein will be secreted out of L. lactis cell, and will be binded on the peptidoglycan of L. lactis by non-covalent interaction. Then the cell-surface display system fused with nsr gene (nisin-resistance gene, food grade selective marker) will be integrated in genome DNA of L. lactis. After that, the growth and display conditions of the engineered L. lactis will be optimized, and the enzyme characterization of the engineered L. lactis as whole cell biocatalyst and its preliminary safty will be study also.
乳制品是优质营养物质,乳糖酶是乳制品消化吸收的关键功能酶。乳糖酶缺乏症(LD)在我国公民中极为普遍,致使这些人不能很好吸收牛奶里的营养物质。现行的体外发酵、补食乳糖酶等措施仅能改善乳糖不耐症,在此我们提出一种全新的治疗LD策略,即利用工程技术在益生菌乳酸乳球菌表面展示乳糖酶,通过此全细胞催化剂在体内、外水解乳糖,解决LD。项目拟选择分子量适中、单亚基即有酶活性的嗜酸乳杆菌β-半乳糖苷酶为靶标,在其N端设计有乳酸乳球菌的启动子、分泌信号肽及肽聚糖锚定基序,整合入乳酸乳球菌基因组,使用食品级的乳链菌肽抗性基因作为筛选标记,使融合蛋白在乳酸菌中高效表达并实现分泌,通过锚定基序与肽聚糖的聚糖骨架非共价结合而展示在细菌表面,使细菌成为一个"大号乳糖酶";进一步对其生长、展示条件进行测定、优化,并测定重组菌作为全细胞催化剂的酶学性质;再利用小鼠进行初步的安全性评价,为乳糖酶工程菌的应用提供实验依据。
乳糖酶缺乏在我国国民的遗传背景中极为普遍,这严重阻碍了国民对乳制品营养物质的吸收。补充益生菌或乳糖酶是现有的解决方案。本研究提出的新解决方案是运用微生物表面展示技术,在乳酸乳球菌表面展示乳糖酶,使其成为一个大号的乳糖酶,进而测定其酶学性质,为其应用提供初步的实验依据。运用分子生物学技术,在嗜酸乳杆菌乳糖酶lacZ基因5’端加上诱导启动子、分泌信号肽,在3’端加上锚定基序,构建的乳糖酶基因展示序列使用自建的温敏质粒pJW,敲入乳酸乳球菌基因组,获得的敲入菌株命名为工程菌PZSLAnT-NZ。获得的工程菌使用RT-PCR确定乳糖酶基因在细胞内表达;并使用全细胞乳糖酶活性测定、形态学变化、细胞组分分离免疫印迹、酶消化、免疫荧光等方法,确定表达的展示蛋白“乳糖酶-锚定基序”融合蛋白定位于乳酸乳球菌细胞壁。测定工程菌的最佳培养及展示条件后,进一步优化其培养基,最终将其比酶活提高7.94%,达53.5U/g(ONPG)或2660.21U/g(乳糖)菌体干重,增加25.29%的菌量,总酶活增加35.23%。进一步测定工程菌作为全细胞催化剂的酶学性质;其最适反应条件为pH5、37℃,酶动力学常数Km为65.36mM,Vmax为121.38U/g(ONPG);钾、钙、镁、EDTA对酶活有促进作用,锌、铁对酶活有抑制作用。与游离乳糖酶相比,工程菌热稳定性差别不大,但工程菌的酸碱及在人工小肠液中稳定性更强。工程菌的遗传稳定、安全性好,无抗生素抗性,动物实验无不良反应。相关研究结果正申请发明专利,并撰写论文。在完成课题研究之余,我们还发明了一种将外源基因敲入到乳酸乳球菌染色体上的新方法,该方法利用乳糖酶基因的表型特征(蓝白斑),使筛选外源基因敲入株更加方便快捷。该方法已申请国际发明专利1项;正在撰写SCI论文。在实验中,偶然情况下,我们分离到两株大肠杆菌噬菌体JMPW1和JMPW2,由于本课题组所在实验室在噬菌体与宿主相互作用方面有深入的研究,因此使用本课题基金,将两株噬菌体全基因组测序,并进行了相关生物学性质研究。全基因组序列已注释并上传至GenBank,登录号分别为KU194205和KU194206,相关结果已撰写论文并投稿。迄今为止,本课题申请国家发明专利1项,投稿论文1篇;举办学术会议1次,参加全国及地区学术会议4次。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
论大数据环境对情报学发展的影响
主控因素对异型头弹丸半侵彻金属靶深度的影响特性研究
拥堵路网交通流均衡分配模型
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
表面展示型重组乳酸乳球菌作为禽流感通用疫苗递送载体的免疫活性研究
新疆天山冰川低温β-半乳糖苷酶的筛选及其在毕赤酵母细胞表面展示的酶学特性研究
耐酸性苹果酸乳酸酶的定向进化与酵母表面展示
乳球菌噬菌体1706新颖复合型DNA聚合酶的功能研究