Gear surface wear and system vibration are two main issues that cause the failure of high-performance gear units. To meet the requirements of long lifespan and high reliability for gearbox in wind turbine, the interactions between gear surface wear and dynamic responses have to be investigated systematically. Motivated by this goal, the project aims to propose a quasi-static wear model of gear pair and an analytical nonlinear dynamic model of planetary gear trains (PGTs), respectively. By considering surface geometry, gear deflection as well as lubrication, the quasi-static wear model can be used to evaluate the wear depth of gear surface under given load cycles. Meanwhile, the analytical nonlinear dynamic model can predict the dynamic properties and steady responses of PGTs by taking account in gear wears, mesh stiffness, gear deflections, transmission errors and dampings. The proposed two models are then combined into a sophiscated dynamic wear model through gear surface reconfiguration and three dimensional contact analyses. With numerical methods, the proposed dynamic wear model of PGTs can be solved and the gear surface wears as well as dynamic performances of the system can be predicted in a quick manner. By investigating the effects of primary design variables on surface wears and system dynamics through sensitivity analysis, the interactions between the gear surface wear and dynamic responses of PGTs can be revealed. Furthermore, a multi-function gear testing rig is developed and some experimental efforts such as wear tests and vibration tests are conducted. With experimental data, the proposed theoretical model and its simulation results can be validated and modified. With above theoretical and experimental efforts, the principle of surface modification is explored to reduce the gear surface wear and some vibration suppression methods are discussed to improve the system dynamic performance.
齿面磨损和系统振动是引发高端齿轮装置失效的重要原因。本项目面向新能源行业对长寿命、高可靠性齿轮装置的需求,以兆瓦级风力机行星齿轮箱为对象,研究并建立计入齿面形貌、轮体柔性和润滑状态等因素的单对齿轮副磨损模型,以及综合考虑齿面磨损、啮合刚度、构件变形、传动误差和系统阻尼等因素的行星轮系刚柔耦合动力学模型,以实现负载工况下的行星传动齿轮磨损寿命预估和计入齿面磨损效应的系统动态特性评判。在此基础上,以三维齿面重构和接触分析为纽带,以单对齿轮副磨损模型和行星轮系刚柔耦合动力学模型为锚点,建构行星传动齿面动态磨损计算模型,分析影响齿面磨损量和系统动态特性的主要影响因素,揭示行星轮系中齿面磨损和系统振动之间的交互作用机理,并结合相关实验研究对所建理论模型进行验证和修改,在此基础上形成以齿轮延寿为导向的齿轮齿廓修形和以减振降噪为目标的系统振动抑制的设计理论与方法。
针对大型能源装备传动装置长寿命、低振动和高可靠性的现实需求,以兆瓦级风力机行星齿轮箱为对象,研究齿轮磨损和动力学行为之间的交互作用机理。提出了一种计入齿面微观形貌的三维齿面重构技术,建立了行星轮系内外啮合副的三维接触模型,分析了构件柔性、制造/安装误差等因素对轮系啮合特性如齿面载荷分布和传递误差的影响,为齿面接触分析提供了数值解决方案。结合Hertz理论和Archard磨损公式,建立了计入齿面形貌、轮体柔性和润滑状态等因素的单对齿轮副准静态磨损模型,分析了载荷参数、齿面偏差和微观修形等设计量对齿面磨损量的影响,明晰了既定工况下齿轮副的齿面磨损行为。建立了综合考虑齿面磨损、齿侧间隙、构件变形、啮合刚度、传动误差、系统阻尼和陀螺效应等因素的行星轮系刚柔耦合动力学模型,分析了几何参数、工况参数、构件柔性、齿面摩擦和微观修形等对系统动态特性的影响,为系统振动抑制提供了依据。将齿轮副准静态磨损模型与行星轮系动力学模型相结合,构建了行星轮系的动态磨损计算流程,研究了工况参数、设计参数、结构形式和啮合错位等对行星轮系中各齿轮齿面磨损行为的影响,揭示了行星轮系中齿面磨损和系统振动之间的交互作用机理。与此同时,通过搭建行星齿轮箱振动测试试验台和齿轮箱故障模拟试验台,开展了行星齿轮箱的动力学实验和磨损实验,并依据测试结果对所建理论模型进行了验证和修改。在理论分析和实验研究基础上,提出以齿轮强度为约束、以传递误差波动量为指标的风电齿轮箱修形方法,确定既定工况下齿轮修形策略和修形量的选取方法,并进一步以齿轮动态传递误差作为性能指标,开展了风电齿轮箱的修形可靠性研究,对所提修形策略的修形效果进行了评估,最终形成了以齿轮减磨延寿为导向的齿轮修形方法和以减振降噪为目标的设计参数优选方案。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
基于分形维数和支持向量机的串联电弧故障诊断方法
掘进工作面局部通风风筒悬挂位置的数值模拟
基于余量谐波平衡的两质点动力学系统振动频率与响应分析
谐波齿轮传动系统齿面磨损机理及其动力学特性退化规律研究
齿面动态磨损与含磨损故障的传动系统非线性特性研究
斜齿轮传动系统动态齿面磨损失效机理及其动力学特性演化规律研究
考虑空间因素的航天器变齿厚行星传动耦合行为机理研究