In this project, we will investigate far-field sub-wavelength imaging with novel flat micro-nano diffractive elements. Note that existing sub-wavelength imaging is mainly useful in the near-field, and the far-field sub-wavelength imaging still faces serious bottleneck due to the absence of evanescent waves. In addition, higher integration of imaging system poses an urgent requirement on miniaturized and planarized lens providing far-field sub-wavelength resolution, which will enhance the industrial values drastically. To cater for the emerging needs in science and commercialization, this proposal aims to create an ultra-thin flat lens (thickness much smaller than 1 wavelength) for far-field sub-wavelength imaging by using phase-discontinuity interfacial structures. The physics of light propagation through phase-discontinuity surface and its correlation to super imaging will be explored, leading to a clear-cut theoretical framework for the first time. Then a novel far-field sub-wavelength lens is to be proposed based on transformation optics with its phase characteristics of the transmitted light obtained. The phase distribution can thus be mimicked by using optimum phase-discontinuity surface, and such advanced flat lens will be fabricated with nanotechnology to verify far-field super-resolution imaging. With theoretical analysis, numerical modeling, and experimental demonstration, it is expected to achieve a universal account to realize ultra-thin flat lens for far-field sub-wavelength imaging with superiority of high efficiency, broadband, and low loss. This proposal is thus of great significance for the further development of nano-optical imaging and bio-medical diagnosis.
亚波长成像技术在微纳光学领域日益受到重视,然而目前已有的成像方案多局限在近场,即使在远场也存在严重的局限性。此外,透镜的小型化和平面化在亚波长成像研究中并没有给予关注,而这却是成像系统集成度不断提高的迫切要求。针对这些问题,本项目旨在利用相位突变表面结构(介质、金属单元阵列),实现具有远场亚波长成像功能的超薄平板透镜(厚度远小于波长)。探明相位突变表面结构影响光传播的一般规律,建立起统一的理论描述框架,并阐明其物理本质。在此基础上,基于变换光学提出新型远场亚波长透镜,研究该透镜对透射光的相位调制特性,选择最优的相位突变表面来实现该相位分布,并以纳米加工和光学实验制备此种先进透镜来实现远场超分辨成像。利用理论分析、高精度数值模拟、实验验证相结合的方法,以期找到一种普适的方案,实现高效率、宽频带、低损耗的超薄平板透镜的远场亚波长成像。本项目的实施,对于高端纳米光学成像的进一步发展具有重要意义。
在项目资助下,我们对超构材料进行了深入研究,在超分辨成像及热超构材料等方面取得了一系列重要研究结果。在该项目资助下,共发表SCI论文10篇,其中一区论文5篇,包括1篇Phys. Rev. Lett.和3篇Adv. Mater.。该项目所取得研究成果简单概括如下。传统的双曲透镜是基于金属-介质-金属多层结构来实现,由于金属的损耗较大,使得成像效果并不理想。针对这一问题,我们提出了全介质型双曲透镜,该透镜所需要的渐变折射率分布可以通过简单的介质打孔结构来实现,解决了传统双曲透镜中存在严重损耗的问题。实验结果表明该透镜的分辨率可达到三分之一波长,且具有低损耗、超宽带的优异特性。针对传统圆形双曲透镜的不足(内外表面都是曲面),提出了具有远场超分辨功能的平板透镜(内外表面都是平面),更有利于光学集成,对于光学成像系统的小型化有重要意义。提出对聚焦光斑进行控制的新方法,基于二元光学元件的精确设计,入射光会形成二次聚焦,并在两个焦斑之间形成巨大的空场,实验结果与理论预期吻合的非常好。同时,我们提出了仅由两层常规材料构成的热隐身斗篷和幻觉器件,并进行了实验研究,测试结果表明该简单模型在稳态和瞬态都有出色的表现,通过消除或改变目标的热散射特征,可以达到隐形或伪装的目的。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
感应不均匀介质的琼斯矩阵
地震作用下岩羊村滑坡稳定性与失稳机制研究
动物响应亚磁场的生化和分子机制
基于混合优化方法的大口径主镜设计
基于相位突变的微波波段超薄透镜机理及应用研究
基于光学超振荡的远场超分辨成像复合透镜
借助亚波长微结构阵列的目标远场超分辨率电磁成像研究
超振荡环带片远场亚波长聚焦矢量机理研究