几类含参数微分方程的极限环个数研究

基本信息
批准号:11801372
项目类别:青年科学基金项目
资助金额:23.00
负责人:盛丽鹃
学科分类:
依托单位:上海师范大学
批准年份:2018
结题年份:2021
起止时间:2019-01-01 - 2021-12-31
项目状态: 已结题
项目参与者:谢胜兰,石义霞,尚欣宇,李敏
关键词:
Hilbert分支分段光滑系统周期解第16问题极限环
结项摘要

Differential equations and dynamical systems are important research fields of modern applied mathematics, which are widely used to describe in various studies of mathematical models of epidemiological, physics, biological, engineering, economical and many other phenomena. The main problems in the field focus on the dynamical behavior of periodic solutions, including the existence, location and stability. This project mainly studies limit cycles of dynamical systems with multiple parameters. These systems are one dimensional and two dimensional systems in smooth case or piecewise smooth case. By the Melnikov function method, multiply parameters method and changing the stability of homoclinic orbits or a focus, the main purpose of this project is to obtain new results on the number of limit cycles for polynomial systems or piecewise smooth Hamiltonian systems and on the existence and number of periodic solutions of periodic equations. Besides, we also develop new bifurcation methods for investigating limit cycles, studying the maximum number of periodic orbits for finite smooth system.

微分方程与动力系统是现代应用数学的一个重要研究方向,涉及流行病学、物理学、生物学、工程和经济等各个领域,主要研究微分方程解的动力学性态,包括周期解的存在性、位置和稳定性等问题。本项目主要研究含多参数的动力系统的极限环的个数,研究对象是一维周期方程与平面自治系统,包括光滑和分段光滑两种情况。主要目的是采用Melnikov函数方法、多参数方法、以及改变同宿环或者焦点的稳定性等方法,获得几类平面多项式系统或分段光滑近哈密顿系统极限环的个数,以及一些一维周期方程周期解的存在性和个数等。另外,将寻求极限环分支的新方法,深入探讨有限光滑系统的极限环个数问题。

项目摘要

本项目主要研究含参数的微分方程的极限环的个数,研究对象是平面自治系统,以及一维和高维的周期方程,包括光滑和分段光滑两种情况。采用Melnikov函数方法,以及改变同宿环的稳定性方法,获得了几类平面光滑的近哈密顿系统的极限环个数。采用多参数平均法,获得一维和高维周期方程周期解的存在性和个数,结果还被推广到了分段光滑的情形。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

基于分形L系统的水稻根系建模方法研究

基于分形L系统的水稻根系建模方法研究

DOI:10.13836/j.jjau.2020047
发表时间:2020
2

拥堵路网交通流均衡分配模型

拥堵路网交通流均衡分配模型

DOI:10.11918/j.issn.0367-6234.201804030
发表时间:2019
3

卫生系统韧性研究概况及其展望

卫生系统韧性研究概况及其展望

DOI:10.16506/j.1009-6639.2018.11.016
发表时间:2018
4

面向云工作流安全的任务调度方法

面向云工作流安全的任务调度方法

DOI:10.7544/issn1000-1239.2018.20170425
发表时间:2018
5

天津市农民工职业性肌肉骨骼疾患的患病及影响因素分析

天津市农民工职业性肌肉骨骼疾患的患病及影响因素分析

DOI:
发表时间:2019

盛丽鹃的其他基金

相似国自然基金

1

非线性常微分方程的极限环和周期解的个数

批准号:19471058
批准年份:1994
负责人:何启敏
学科分类:A0301
资助金额:3.00
项目类别:面上项目
2

二次系统极限环的个数与分布

批准号:19671071
批准年份:1996
负责人:张平光
学科分类:A0301
资助金额:4.50
项目类别:面上项目
3

含参数向量场的极限环与同、异宿轨研究

批准号:11101189
批准年份:2011
负责人:吴玉海
学科分类:A0301
资助金额:23.00
项目类别:青年科学基金项目
4

几类平面微分系统的极限环分支

批准号:11626171
批准年份:2016
负责人:徐伟骄
学科分类:A0301
资助金额:3.00
项目类别:数学天元基金项目