Since antifouling agents containing organotin were forbidden in offshore facilities from Jan. 2008, the research and development of novel environmental-friendly antifouling agents has never been stopped. However, potential antifouling agents with superhydrophilic property tailored for oceanic applications were rarely reported. Moreover, anti-marine microbial attachment mechanism of some highly reported antifouling agents also requires further analysis. ..In this project, we propose to employ the recently discovered anti-bacterial grapheme-based superhydrophilic materials in marine anti-fouling applications. Grapheme-based composites with anti-fouling properties will be constructed through in-situ sythesized nano tungsten oxide between graphene layers. In addition, the anti-fouling effect will be further enriched by depositing silver nano particles on the graphene composites using plasmon resonance. These novel materials are expected to have enhanced superhydrophilic properties and powerful antifouling effect because they combine the excellent anti-bacterial properties of graphene, WO3-x(x=1-0) and nano silver,the loading effect of graphene to tungsten oxide and the separation effect of tungsten to graphene layers. The molecular structures of the functional groups on the surface of these superhydrophilic materials as well as the chemical bonding mechanism between the layers will be characterized by Fourier Transform Infrared Spectroscopy (FTIS), Raman Spectroscopy and X-Ray Diffraction (XRD). The topical morphology and structure of the proposed products will be further studied using high resolution TEM. The degree of hydrophilicity of the composite will be determined by their surface contact angles. Finally, the inhibiting effect of the composite on microbial activity will be studied by microbe reagent inoculation and suspension in oceanic environment. Moreover, we will also follow the cellular metabolism of the inoculated microorganism in order to gain insightful understanding on the anti-microbial attachment mechanism of the graphene-based composite...This research project will provide leading development of novel marine anti-fouling agents and elucidate the anti-fouling mechanisms of superhydropilic composite materials.
自2008年海上设施禁止使用含锡防污剂,新型环保防污剂的研发从未停止。然而,针对海洋特殊应用条件的超亲水防污剂却鲜见报到,抗海洋微生物附着机理研究也尚待深入。.本项目将超亲水复合材料引入海洋防污领域,在石墨烯层片间原位生成纳米氧化钨形成复合材料,再使用化学法在材料表面组装银等离子体,以期综合应用石墨烯、氧化钨和纳米银的抑菌作用、石墨烯对氧化钨的负载、氧化钨对石墨烯层片的分离以及形成复合材料的超亲水性能,制备一种新型强力海洋防污剂。项目中使用傅利叶红外光谱、拉曼光谱及X射线衍射仪测定产物的表面官能团结构及层片间成键方式;使用高分辨透射电镜确定产物形貌及结构;使用表面接触角测定复合材料超亲水性能;最后,使用微生物学实验和实海挂片检测复合材料对微生物的抑制活性,并期待从微生物细胞内活性物质变化角度深入了解该防污剂对微生物附着腐蚀的抑制机理。 .本项目将为新型海洋防污剂的研发和防污机理提供指导。
本项目针对海洋特殊应用条件探索新型环保、绿色、强效防污剂,对抗海洋微生物附着机理也进行了深入研究,完成了主要的研究工作,达到了预期的研究目标。.本项目将超亲水复合材料引入海洋防污领域,以氧化石墨烯和六氯化钨为前驱体,分别以环已醇/乙醇/乙二醇为溶剂,使用一步法成功制备出石墨烯负载氧化钨复合材料防污剂。以氧化钨纳米束为核心,通过简单的光化学法成功制备出石墨烯负载的银包覆氯化银(Ag@AgCl)附着氧化钨(W18O49)表面等离子体光催化复合材料(Ag@AgCl/W18O49)。首先通过SDS表面活性剂修饰使氧化钨的表面带负电;接下来,以硝酸银溶液为银离子源,使带正电的银离子均匀分布在氧化钨纳米束表面;充分搅拌,逐滴加入盐酸溶液,通过沉淀法在氧化钨低维材料表面均匀沉淀氯化银(AgCl);最后,采用光化学法,使氯化银表面的银离子还原为单质银包覆在最外层,完成等离子体光催化剂在氧化钨表面的修饰。在石墨烯层片间原位生成非化学计量的纳米氧化钨线束形成复合材料,再使用光化学法组装银等离子体,可以增加材料在可见光作用下的光催化分解有机物的性能,以期综合应用石墨烯、氧化钨和纳米银的抑菌作用、石墨烯对氧化钨的负载、氧化钨对石墨烯层片的分离以及形成复合材料的超亲水性能,制备一种新型强力海洋防污剂。. 项目中使用X射线衍射仪、拉曼光谱仪及X射线光电子能谱测定产物的物相和表面特性,使用高分辨透射电镜确定产物形貌及结构,使用表面接触角测定复合材料超亲水性能。结合接触角表征结果,研究了不同复合材料成分、添加剂、表面修饰剂对层片结构复合材料超亲水性能影响的基本规律,以及纳米复合材料表面、界面的物理化学交互反应,建立了该复合材料表面亲水机理的理论模型。使用微生物学实验方法检测复合材料对微生物的抑制活性,分析了该防污剂对微生物附着腐蚀的抑制机理,确定了防污剂与微生物细胞之间的作用关系。. 本项目将为新型海洋防污剂的研发和防污机理研究提供指导。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
农超对接模式中利益分配问题研究
水氮耦合及种植密度对绿洲灌区玉米光合作用和干物质积累特征的调控效应
多酸基硫化态催化剂的加氢脱硫和电解水析氢应用
纳米银负载石墨烯/二硫化钼插层复合材料的可控合成及其抗菌防污机理研究
纳米氧化锌-氧化石墨烯/水性含氟聚氨酯超双疏涂层的构筑及其海洋防污机理研究
PtPd/石墨烯纳米催化剂原位负载、控制合成及电催化性能研究
CoSb3/石墨烯纳米复合材料的原位合成及热电输运特性