In order to improve the surface area and degree of crystallinity of the catalyst and the quantum efficiency, Gd2MSbO7(M=Bi,Y,Yb) will be prepared by solid state reaction method or hydrothermal synthesis method or sol-gel method for the first time in this project. Polyaniline- Gd2MSbO7(M=Bi,Y,Yb), polythiophene-Gd2MSbO7 (M=Bi,Y,Yb) and zeolite-Gd2MSbO7(M=Bi,Y,Yb) composite catalysts will be prepared for the first time. The perfect degree of crystallinity for the catalyst will be obtained by optimizing the preparation technology. Gd2MSbO7(M=Bi,Y,Yb) loaded with cocatalyst will be obtained for the first time. The composite nanofiber which contains Gd2MSbO7(M=Bi,Y,Yb), polyacrylonitrile and multilayer carbon nano tube will be prepared for the first time. The novel photoelectrode which contains Gd2MSbO7(M=Bi,Y,Yb) will be prepared. The physical and chemical properties of above new catalysts will be characterized. The photodegradation of nonbiodegradable organic contaminants will be carried out by using above new catalysts under visible light irradiation, and the purpose is to improve the photodegradation efficiency of microcystic toxins, dursbann and methyl parathion. Synergetic effect and mechanism research on Gd2MSbO7 (M=Bi, Y, Yb), zeolite, polyaniline, polythiophene, multilayer carbon nano tube, visible light and organic pollutants will be analyzed during the photodegradation process of organic pollutants with emphasis. The influencing factors will be analyzed for improving the degradation efficiency of organic pollutants. The relationship among the degradation efficiency of organic pollutants, the microstructure and optical property of above new catalysts will be discussed. The intermediate products of organic pollutants will be obtained during photodegradation process of organic pollutants. The possible photocatalytic degradation pathway of organic pollutants will be obtained.
为提高催化剂比表面积、结晶度及光量子效率,本研究首次通过固相反应法、水热合成法和溶胶-凝胶法制备Gd2MSbO7(M=Bi,Y,Yb)(GMS);首次制备聚苯胺-GMS和聚噻吩-GMS复合催化剂;首次制备GMS-沸石复合催化剂;通过优化制备工艺完善催化剂的结晶度;首次制备GMS表面负载辅助催化剂的新型复合催化剂;首次制备多层碳纳米管-GMS-聚丙烯腈复合纳米纤维;利用GMS制备新型光电极;对上述新型催化剂进行物理和化学性能表征。利用上述新型催化剂,可见光作用下,进行光催化降解难于生物降解的有机污染物实验,旨在改善光催化降解水体中微囊藻毒素、毒死蜱和甲基对硫磷的效率。重点研究在目标污染物降解过程中,沸石、聚苯胺、聚噻吩、多层碳纳米管、GMS、可见光和有机污染物的协同作用机制及其降解效果的影响因素,探讨上述新型催化剂的微观结构、光学特性与光催化效率之间的关系,鉴定中间产物并获得有机物降解路径。
本项目首次通过固相反应法、水热合成法和溶胶-凝胶法成功制备了Gd2MSbO7(M=Bi,Y,Yb)(GMS)、聚苯胺-GMS和聚噻吩-GMS复合催化剂、GMS-沸石复合催化剂。成功地通过优化制备工艺完善了催化剂的结晶度。首次成功地制备了GMS表面负载辅助催化剂的新型复合催化剂。首次成功地制备了多层碳纳米管-GMS-聚丙烯腈复合纳米纤维。成功地利用GMS制备了新型光电极。成功地对上述新型催化剂进行了物理和化学性能表征,获得了上述催化剂的性能数据。通过实验顺利地提高了上述催化剂的比表面积、结晶度及光量子效率。利用上述新型催化剂,可见光作用下,成功地完成了光催化降解难于生物降解的有机污染物实验,显著改善了光催化降解水体中微囊藻毒素、毒死蜱和甲基对硫磷的效率。系统地研究了目标污染物在降解过程中,沸石、聚苯胺、聚噻吩、多层碳纳米管、GMS、可见光和有机污染物的协同作用机制及其降解效果的影响因素,探讨了上述新型催化剂的微观结构、光学特性与光催化效率之间的关系,成功地鉴定了中间产物并获得了有机物的降解路径。本项目负责人栾景飞作为通讯作者发表了23篇SCI论文。作为第一发明人申请了10项发明专利,其中获得授权3项。
{{i.achievement_title}}
数据更新时间:2023-05-31
聚酰胺酸盐薄膜的亚胺化历程研究
高庙子钠基膨润土纳米孔隙结构的同步辐射小角散射
不同pH值下锑(V)对大麦根伸长的毒性及其生物配体模型的构建
基于天然气发动机排气余热回收系统的非共沸混合工质性能分析
添加有机物料对豫中烟田土壤呼吸的影响
磁场-磁性颗粒负载纳米In2BiTaO7-可见光降解水中难降解有机污染物的协同作用与机理研究
高铁酸盐与臭氧协同作用去除水中难降解有机物机理研究
金属-有机骨架类Fenton体系去除水中难降解有机污染物机理研究
水中难降解有机污染物的吸附富集-光电催化协同去除研究