双曲流形与复动力系统

基本信息
批准号:10826044
项目类别:数学天元基金项目
资助金额:3.00
负责人:李保奎
学科分类:
依托单位:北京理工大学
批准年份:2008
结题年份:2009
起止时间:2009-01-01 - 2009-12-31
项目状态: 已结题
项目参与者:
关键词:
复动力系统Klein群双曲流形保测地线映射
结项摘要

三维流形的研究是当今数学的热门分支之一,已经受到广泛的关注。特别是三维流形的动力系统性质,Klein群在此占据很大部分。目前Klein群本身的研究已经取得了很大成就,特别在离散性、商空间等整体概念方面。本研究旨在利用复分析理论,特别是动力系统理论和Klein群理论,对低维双曲流形局部的拓扑和几何性质进行刻画分析;围绕双曲空间在Klein群或Mobious变换下的作用性质,进一步刻画其局部性质和整体性质之间的关系。本项目的研究对加强Mobious群与双曲流形的联系有着极其重要的意义。

项目摘要

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

基于自适应干扰估测器的协作机器人关节速度波动抑制方法

基于自适应干扰估测器的协作机器人关节速度波动抑制方法

DOI:10.13973/j.cnki.robot.210412
发表时间:2022
2

基于直觉模糊二元语义交互式群决策的技术创新项目选择

基于直觉模糊二元语义交互式群决策的技术创新项目选择

DOI:10.12005/orms.2019.0029
发表时间:2019
3

孕期双酚A暴露与自然流产相关性的Meta分析

孕期双酚A暴露与自然流产相关性的Meta分析

DOI:10.7507/1672-2531.202205002
发表时间:2022
4

老年2型糖尿病合并胃轻瘫患者的肠道菌群分析

老年2型糖尿病合并胃轻瘫患者的肠道菌群分析

DOI:10.3877/cma.j.issn.1674-6880.2020.02.006
发表时间:2020
5

沙尘信道下激光通信系统的性能分析

沙尘信道下激光通信系统的性能分析

DOI:10.3788/fgxb20194005.0659
发表时间:2019

李保奎的其他基金

批准号:11101032
批准年份:2011
资助金额:23.00
项目类别:青年科学基金项目

相似国自然基金

1

复双曲Klein群的基本域与无穷处的流形

批准号:11871202
批准年份:2018
负责人:谢宝华
学科分类:A0201
资助金额:50.00
项目类别:面上项目
2

渐近实/复双曲爱因斯坦流形及共形/CR几何相关问题

批准号:11871331
批准年份:2018
负责人:王芳
学科分类:A0109
资助金额:53.00
项目类别:面上项目
3

复动力系统中Julia集和双曲分支的结构和维数

批准号:11671091
批准年份:2016
负责人:邱维元
学科分类:A0203
资助金额:48.00
项目类别:面上项目
4

复动力系统中的非一致双曲性条件与Julia 集的维数

批准号:11101124
批准年份:2011
负责人:李怀彬
学科分类:A0203
资助金额:23.00
项目类别:青年科学基金项目