RBM15 is the fusion partner for RBM15-MAL translocation found in childhood acute megakaryoblastic leukemia (AMKL). RBM15 is required for the maintenance of the homeostasis of long term hematopoietic stem cells and for differentiation of B cells and megakaryocyte. RBM15 encodes an RNA binding protein important for Notch mediated transcriptional regulation and RNA export pathways. Still the detailed molecular mechanisms on how RBM15 controls hematopoiesis are not known. We have identified that the RBM15 protein stability is controlled by PRMT1. Furthermore, isoform V2 is the most efficient isoform to degrade RBM15. We are very excited to investigate whether methylation is a novel signal for triggering ubiquitylation. If that is the case, we will purify the E3 ligase and the ligase complex responsible for RBM15 ubiquitylation. Based on our preliminary data that PRMT1 V2 level is dynamically regulated during the megakaryocyte differentiation, we hypothesize PRMT1V2 regulates megakaryocyte differentiation via regulating the stability of RBM15. In this project, we are going to dissect the mechanisms on how the RBM15 is degraded by PRMT1 and on how RBM15 and PRMT1 function together to program the megakaryocyte differentiation. We will investigate the role of PRMT1 in AMKL patients and RBM15-MAL initiated AMKL using primarily human cord blood cell transduced with RBM15-MAL gene. A cell based PRMT1 assay is being developed based on PRMT1 dependent RBM15 stability change. A few PRMT1 inhibitors available to us now will be used to optimize the cell-based PRMT1 assay. The objective is to explore the feasibility of target PRMT1 for leukemia treatment.
PRMT1和RBM15是造血干细胞巨核系分化中的重要蛋白,它们相互作用影响人类造血干细胞巨核系分化的研究未见报到,它们之间的信号传导机制也不明。已发现RBM15功能缺陷存在于急性巨核细胞白血病(AMKL)患者中,PRMT1在AMKL中的意义不明。本研究利用多种分子生物学方法、基因芯片技术,以CD34+脐血细胞和MEG-01细胞为研究对象,揭示PRMT1和RBM15蛋白共同影响人类造血干细胞巨核系分化的信号传导机制;同时收集AMKL患者骨髓标本,研究PRMT1的表达和意义,应用PRMT1抑制剂筛选系统,获得有效调节巨核细胞分化的抑制剂,评价其作为AMKL患者靶向治疗新药的可行性。该研究不仅丰富了人类造血干细胞巨核系分化的基础理论,也获知了PRMT1蛋白作为AMKL潜在治疗靶点和PRMT1抑制剂作为靶向治疗新药的价值。
项目背景:蛋白精氨酸甲基化转移酶1(PRMT1)和RNA结合蛋白15(RBM15)是造血干细胞巨核系分化中的重要蛋白,它们相互作用影响人类造血干细胞巨核系分化的研究未曾报到,它们之间的信号传导机制也不明。主要研究内容:利用多种分子生物学方法、基因芯片技术,以CD34+脐血细胞和MEG-01细胞为研究对象,揭示PRMT1和RBM15蛋白共同影响人类造血干细胞巨核系分化的信号传导机制,应用PRMT1特异性抑制剂(DB75)评价其作为AMKL患者靶向治疗新药的可行性。重要结果和关键数据:1.PRMT1甲基化RBM15的R578位点;PRMT1V2异构体是甲基化RBM15的优势酶;甲基化的RBM15蛋白稳定性降低,经过由E3连接酶介导的泛素化降解。2.PRMT1过表达阻滞了巨核细胞成熟障碍,主要是由于PRMT1引起了RBM15蛋白的甲基化-泛素化转化过程而降解,降低RBM15的蛋白表达,同样引起巨核细胞成熟障碍。当通过lentivirus 恢复RBM15蛋白的表达水平或者用PRMT1抑制剂时,PRMT1引起的巨核细胞分化障碍可以得到挽救。这一结果充分说明RBM15蛋白是巨核细胞分化的重要蛋白。3.在分子水平上,RBM15结合了对巨核细胞分化具有重要作用的mRNA内含子区域,例如GATA1,RUNX1,TAL1和c-MPL。因此,PRMT1通过降低RBM15蛋白水平来调节RNA可变剪切体。RBM15蛋白通过与SF3B1的作用调控了这些重要基因的可变剪切。4.我们通过在CD34+细胞中共同表达OTT-MAL 和MPLW515L建立巨核细胞分化异常模型,来证明PRMT1抑制剂作为靶向治疗靶点的可能性。科学意义:该项研究不仅丰富了人类造血干细胞巨核系分化的基础理论,也获知了PRMT1蛋白作为急性巨核细胞白血病潜在治疗靶点可行性。
{{i.achievement_title}}
数据更新时间:2023-05-31
Intensive photocatalytic activity enhancement of Bi5O7I via coupling with band structure and content adjustable BiOBrxI1-x
Asymmetric Synthesis of (S)-14-Methyl-1-octadecene, the Sex Pheromone of the Peach Leafminer Moth
七羟基异黄酮通过 Id1 影响结直肠癌细胞增殖
Sparse Coding Algorithm with Negentropy and Weighted ℓ1-Norm for Signal Reconstruction
F_q上一类周期为2p~2的四元广义分圆序列的线性复杂度
Eos对红系分化和巨核系分化的调控作用及机制研究
锌指蛋白ZNF16(HZF1)在红系和巨核系细胞分化中的功能和机制研究
CTCF对造血干细胞红系分化及珠蛋白表达的调控机制
Wnt3a提高CD34+造血干/祖细胞红系分化潜能且抑制巨核系分化潜能的作用研究