More and more scholars have performed a series of theoretical/experimental research and application attempts for anti-roll-connected hydro-pneumatic suspension systems. However, the inherent nonlinear time-varying characteristics of the interconnected hydro-pneumatic suspension system are still oversimplified, especially the variation in physical properties of the mixed fluid caused by the mixing of oil and gas and the nonlinear variation in the multi-chamber coupled flow characteristics. There are thus still some uncertainties in the actual application, such as the individual performance difference of each suspension strut and the difference of the net fluid flow between the two connected sides. Therefore, this project intends to pioneer reveal the two-phase mixing mechanism of oil and gas and the multi-chamber coupling characteristics of mixed fluid in interconnected hydro-pneumatic suspension systems, and explore the regulation methods of the gas-oil mixing. In the proposed project:.1) A visual observation/measurement system is designed, and the internal and external responses of the anti-roll-connected hydro-pneumatic suspension system are observed under coupled dynamic excitation. The two-phase mixing mechanism of the oil and gas and the multi-chamber coupling flow mechanism of the mixed fluid are investigated;.2) On the basis of the gas-liquid two-phase dual-mode mass transfer theory, turbulence theory and fluid mechanics, the generation and evolution model of gas-oil two-phase mixing, multi-chamber coupled flow model will be developed. The fundamental theory of multi-chamber coupled gas-liquid two-phase mixing will be established;.3) The regulation method of gas-oil mixing will be explored and a new active control method for interconnected suspension system will be proposed;.4) Considering the ride and dynamic roll stability of the vehicle, the design method of anti-roll-connected suspension system and the comprehensive performance regulation guidance will be proposed. .The research project will tackle the gas-oil mixing of interconnected hydro-pneumatic suspension system, which possess theoretical and engineering significance.
国内外越来越多的学者针对抗侧倾互联油气悬架系统进行了理论/实验研究和应用尝试。但目前互联油气悬架系统本身的非线性时变特性仍被过度简化,特别是由于油气两相掺混引起的混合液物性变化,以及混合液多腔耦合流动特性的非线性变化。导致如各悬架缸个体性能差异和联通后两侧净液流量差异等的不确定性问题。本项目拟率先揭示互联油气悬架系统中油气两相掺混机理和混合液多腔耦合特性,并探索多腔室掺混程度调控措施。本项目主要1)设计可视化观测系统,在耦合动态激励下观测抗侧倾互联油气悬架系统内外响应,分析各腔室油气两相掺混机理和混合液多腔耦合机理;2)依据双模传质理论、湍流理论及流体力学等基础,建立油气两相掺混的生成演化模型、混合液多腔耦合流动模型,建立多腔室耦合气液两相掺混基础理论;3)设计掺混程度调控措施,提出悬架系统主动控制的新方法;4)基于复杂路面上车辆平顺性和侧倾稳定性,提出抗侧倾互联悬架系统综合性能调控指南。
抗侧倾互联油气悬架对提高重型商用车的平顺性和侧倾稳定性意义明显,本项目针对无分隔油气悬架系统中油气两相掺混机理和抗侧倾调控措施问题,旨在揭示油气两相掺混的温度和频率特性,解决该类悬架系统的高维非线性动力学建模难题,建立高效的抗侧倾预测控制方法以及相应的性能评价方法,保证车辆行驶平顺性的同时,提高车辆的侧倾阈值和动态侧倾稳定性。研究工作进展顺利,按时完成预定目标,部分研究工作(如油气混合悬架的耦合动力学建模和学习型抗侧倾控制研究)达到并超过了申请书所列的预期目标。具体的研究计划和目标包括:1)研究油气不分隔式油气悬架系统的建模分析方法和油气两相掺混状态耦合机理和表征方法,探索油气掺混特性与温度和激振频率的非线性关系。2)设计油气悬架系统的内部状态估计器,分析模型不确定条件下的高精度估计方法,并研究油气掺混状态和车辆动力学状态的联合估计算法。3)构建重型商用车的动态侧倾稳定性在线预测方案,设计考虑侧倾主频率的侧倾阈值预测算法,探索重型商用车动态侧翻条件和时变特性。4)构建配备抗侧倾悬架系统的重型商用车仿真和比例试验平台,设计学习型抗侧倾控制方法,并验证上述悬架特性、状态估计、侧倾预测的有效性。
{{i.achievement_title}}
数据更新时间:2023-05-31
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
氯盐环境下钢筋混凝土梁的黏结试验研究
三级硅基填料的构筑及其对牙科复合树脂性能的影响
多轴商用车抗侧倾液压互联悬架与车轮转向系统的协同控制研究
多支路油气悬架刚度阻尼耦合特性及控制方法研究
重载车辆气压制动系统与油气悬架耦合协同控制方法研究
双螺杆油气混输泵转子设计方法研究